
1. The number of free electrons per 10 mm of an ordinary copper wire is 2×10^{21} . The average drift speed of the electrons is 0.25 mm/s. The current flowing is:				
A. 0.8 A	B. 8 A	C. 80 A	D. 5 A	
2. Which of the follow	ing cells is more likely to	be damaged due to sho	rt circuiting?	
A. Daniel	B. Dry	C. Acid	D. Fuel	
3. A gas expands from	5 litre to 105 litre at a co	onstant pressure 100N/m ²	² . The work done is	
A. 1 Joule	B. 4 Joule	C. 8 Joule	D. 10 Joule	
4. The Helium nuclei of A. Hydrogen nuclei by C. Hydrogen nuclei thr	process of chain reaction	n B. Hydrogen nuclei thr D. None of these	ough nuclear fission	
5. In the atom bomb drused was	copped by Americans in	1945 on Nagasaki, Japan	, the fissionable material	
A. Helium 4	B. Plutonium 239	C. Uranium 235	D. Uranium 233	
6. The engine of a truc by the truck in time <i>t</i> is		delivers constant power.		
A. <i>t</i>	B. t ²	$C.\sqrt{t}$	D. $t^{3/2}$	
7. The velocity of elect hydrogen atom is	fron in ground state of			
A. 2×10^5 B. 2×10^6	C. 2×10^7 D. 2×10^8			
m/s m/s	m/s m/s			
		a hydrogen atom is 5.3	x 10 ⁻¹¹ m; then the radius	
of the second orbit mu A. 15.9 x 10 ⁻¹¹ m	B. 10.6 x 10 m	C. 21.2 x 10 ⁻¹¹ m	D. 42.4 x 10 ⁻¹¹ m	
9. A person pushes a ro	ock of $10^{10} { m Kg}$ mass by a	oplying a force of only 1	0N for just 4 seconds.	
The work done is			J	
A. 1000 Joule	B. 0 J	C. nearly zero	D. positive	
10. One can take pictures of objects which are completely invisible to the eye using camera films which are sensitive to				
A. ultra-violet rays	B. sodium light	C. visible light	D. infra-red rays	
11. Light from a 100 watt filament bulb is passed through an evacuated glass tube containing sodium vapour at a high temperature. If the transmitted light is viewed through a spectrometer,				
we will observe A. D ₁ and D ₂ lines of sodium with good intensity B. dark lines where D ₁ and D ₂ lines should have been observed				
C. continuous radiation	n from the bulb only	D. the entire emission s	spectrum of sodium	

C. away from the line towards					
+2q D. away from the line towards -q					
41. Wein's displacement law is given by					
A. $\lambda_m = B. T/\lambda_m = C. \lambda_m T = D. T = \lambda_m$					
constant constant = constant					
42. If two electrons are forced to come closer to each to each other, then the potential energy					
A. becomes zero B. increases C. decreases D. becomes infinite					
71. decomes zero B. mercases C. decreases B. decomes minime					
43. The specific heat at constant pressure is greater than that of the same gas at constant volume because					
A. at constant volume work is done in expanding the gas					
B. at constant pressure work is done in expanding the gas					
C. the molecular attraction increases more at constant pressure					
D. the molecular vibration increases more at constant pressure					
44. The specific heats of CO ₂ at constant pressure and constant volume are 0.833 J/kg.K and					
0.641 J/kg.K respectively. If molecular weight of CO_2 is 44, what is the universal constant R ?					
A. 4.19 x 10 ⁷ erg/cal B. 848.8 J/gm/K C. 8.448 J/mol/K D. 4.19 J/cal					
45. The freezing point of the liquids decreases when pressure is increased, if the liquid					
A. expands while freezing B. contracts while freezing					
C. does not change in volume while freezing D. none					
46. The equation of a transverse wave on a					
stretched string is given by					
$y = 0.05 \sin \pi (2t/0.002 - x/0.1)$ where x and y are expressed in metres and t in sec.					
The speed of the wave is					
A 100					
M.100 B. 50 m/s C. 200 m/s D. 400 m/s					
47. The ratio of velocity of the body to the velocity of sound is called					
A. Magic number B. Laplace number C. Natural number D. Mach number					
48. Television signals on earth cannot be received at distances greater than 100 km from the					
transmission station. The reason behind this is that					
A. the receiver antenna is unable to detect the signal at a distance greater than 100 km					
B. the TV programme consists of both audio and video signals					
C. the TV signals are less powerful than radio signals					
D. the surface of earth is curved like a sphere					
49. A ball is thrown from a height of h m with an initial downward velocity v_0 . It hits the ground,					
loses half of its Kinetic energy & bounces back to the same height. The value of v ₀ is					
A. $\sqrt{2gh}$ B. \sqrt{gh} C. $\sqrt{3gh}$ D. $\sqrt{2.5gh}$					

60. The dimensions of	energy and torque respec	tively are	
	B. MLT^2 and ML^2T^2		D. MLT^2 and MLT^2
61. When Benzene diaz	zonium chloride reacts w	ith hypophosphorous aci	d, it produces
A. benzene	B. phenol	C. phenylphosphite	D. phenylphosphate
62. The reaction of alip	hatic primary amine with	n nitrous acid in cold pro	duces
A. nitrile	B. alcohol	C. diazonium salt	D. secondary amine
63. Ethylamine can be	prepared by the action of	bromine and caustic pot	ash on
A. acetamide	B. propionamide	C. formamide	D. methyl cyanide
	tion of acetaldehyde resu B. CH ₃ CHOHCH ₂ CHO		D. CH ₃ CH ₂ OH + CH ₃ COOH
65. Which compound re	eacts fastest with Lucas 1	reagent at room temperat	ure?
A. Butan-l-ol	B. Butan-2-ol	C. 2-Methyl propan-l-o	l D. 2-Methyl propan-2- ol
66. The reaction with D	O ₂ O, (CH ₃) ₃ CMgCl produ	ices	
A. (CH ₃) ₃ CD	B. (CH ₃) ₃ CO	C. (CD ₃) ₃ CD	D. (CD ₃) ₃ COD
67. The reaction with a	lcoholic potash, l-chlorol	outane gives	
A. 1-Butene	B. 1-Butanol	C. 2-Butene	D. 2-Butanol
	agent during nitration of	f	
benzene is	C NO : D HNO		
	C. NO_2 D. HNO_3		
-	na and pi bonds in 1-bute		
A. 5 sigma and 5 pi	B. 7 sigma and 3 pi	C. 8 sigma and 2 pi	D. 6 sigma and 4 pi
70. The most stable car	bonium ion among the ca	ations is	
	B. ter-butyl	C. n-butyl	D. none of these
			a 11 10
	y active stereo-isomers at B. 2	re possible for butane-2, C. 3	3-diol? D. 4
A. 1	D. 2	C. 3	D. 4
72. B.P. and M.P. of in	ert gases are		
A. high	B. low	C. very high	D. very low
73. [CO(NH ₃) ₅ Br] SO ₄	and [CO(NH ₃) ₅ SO ₄] Br	are examples of which t	vpe of isomerism?
A. Linkage	B. Geometrical	C. Ionization	D. Optical
74. The valency of Cr i	n the complex [Cr(H ₂ O) ₄	$_{1}\text{Cl}_{2}]^{+}$ is	
A. 3	B. 1	C. 6	D. 5

75. In Nessler's reagent A. Hg ⁺ B. Hg ²⁺				
	O, copper is co-ordinated B. four water molecules		D. one water molecule	
77. Which of the follow A. HCl	ving is a weak acid? B. HBr	C. HP	D. HI	
78. When SO ₂ is passed A. the solution turns bluc. SO ₂ is reduced	l through acidified K ₂ Cr ₂ ue	B. the solution is decole D. green $Cr_2(SO_4)_3$ is for		
79. Which of the follow A. H ₂ O	ring has lowest boiling p B. H ₂ S	oint? C. H ₂ Se	D. H ₂ Te	
80. Nitric oxide is preparation. Fe 81. The laughing gas is A. nitrous B. nitric oxide oxide	ared by the action of dil. B. Cu C. nitrogen D. nitrogen trioxide pentaoxide	C. Zn	D. Sn	
82. Ordinary glass is A. sodium silicate C. calcium and Sodium	silicate	B. calcium silicate D. copper silicate		
83. The chemical name	of phosgene is			
A. Phosphene	B. Carbonyl chloride	C. Phosphorous oxychloride	D. Phosphorous trichloride	
84. Which one of the fo	ollowing is strongest Lew B. BCl ₃	vis acid? C. BBr ₃	D. BI ₃	
85. Three centred bond A. NH ₃	is present in B. B ₂ H ₆	C. BCl ₃	D. AlCl ₃	
86. Plaster of Paris is A. CaSO ₄ .H ₂ O	B. CaSO ₄ .2H ₂ O	C. CaSO ₄ .1/2 H ₂ O	D. CaSO ₄ .3/2 H ₂ O	
87. Rocky impurities present in a mineral are called				
A. flux B. gangue	C. matte D. slag			
88. Free hydrogen is fo A. acids	und in B. water	C. marsh gas	D. water gas	
89. When zeolite, which	h is hydrated sodium alu	minium silicate, is treate	d with hard water; the	

sodium ions	s are exchan	ged with B. K ⁺		C. SO ₄ ² -	D. Mg ²⁺
-	_	day of electr node is (Al =	•	n aluminium chloride, th	e amount of aluminium
A. 0.27 g		B. 0.3 g		C. 2.7 g	D. 0.9 g
91. The mig				afluence of an electric fie t C. Cataphoresis	eld is known as D. Dialysis
92. In a col A. 1 to 10 A		particle size B. 20 to 50	_	C. 10 to 1000 A°	D. 1 to 280 A°
				5. The value of rate cons	
A. 1.05 ⁻¹	1-IIIe of a fil	B. 0.15 ⁻¹	:HOH IS 09.3.	C. 0.015 ⁻¹	D. 0.0015 ⁻¹
		on of a strong	g acid and	6. 0.013	2. 0.0012
A. 13.7 Kcal/mol	B. 9.6 Kcal/mol	C. 6 Kcal/mol	D. 11.4 Kcal/mol	90.	
95. In exoth	nermic react	ions,			
A. $H_R = H_P$		B. $H_R > H_P$		C. $H_R \ll H_P$	D. None of the above
96. Which is	is a buffer so	olution?			
A. CH ₃ COOH + B. CH ₃ COOH + CH ₃ COONa CH ₃ COONH ₄ 97. The pH of 0.01 M solution of HCl is			H_4	C, CH ₃ COOH + NH ₄ C	l D. NaOH + NaCl
A. 1.0	01 0.01 W1 S	B. 2.0	CIIS	C. 10.0	D. 11.0
98. In whic	h of the foll	owing case d	loes the reac	tion go fastest to comple	etion?
A. $k = 10^2$		B. $k = 10^{-2}$		C. $k = 10$	D. $k = 1$
99. What qu	uantity of lii	mestone (Ca	CO ₃) on hea	ting will give 28 kg of C	CaO?
A. 1000 kg	·	B. 56 kg		C. 44 kg	D. 50 kg
100. The pe	ercentage of	oxygen in N B. 16	aOH is	C. 18	D. 10
101. If we t	_	CO ₂ and 14 praction of CO	-	G. 10	2.10
A. 1/5	B. 1/3	C. 1/2	D. 1/4		
102 The m	olarity of a	solution of N	JacCOc havii	ng 5.3 g/250 ml of soluti	on is
A. 0.2 M	orarity or a	B. 2 M	ia ₂ CO3 Havii	C. 20 M	D. 0.02 M
103. A gas be applied in	-	t 1 atm press	sure. To com	apress it to 1/2th of its in	itial volume, pressure to

A. 1 atm	B. 4 atm	C. 2 atm	D. 1/4 atm	
104. The value of <i>R</i> in 6 A. 0.0831	calorie/degree/mole is B. 8.31	C. 8.31 x 10 ⁷	D. 1.987	
105. Which of the followard. Conductors	wing possesses zero resis B. Semi-conductors	stance at 0 K? C. Super-conductors	D. Insulators	
106. CsCl has lattice of A. ccp	the type B. fcc	C. bcc	D. hcp	
1				
A. sodium atom is reduced 108. Octahedral molecu hybridisation.	ween sodium and chlorin B. sodium ion is reduced lar shape exists in C. sp ³ d ³ D. sp ² d ²	C. chlorine atom is reduced	D. chloride ion is reduced	
109. NH ₃ and BF ₃ form A. a co-ordinate bond	an adduct readily because B. a covalent bond	se they form C. an ionic bond	D. a hydrogen bond	
110. Diagonal relations. A. Li and Mg	hip exists between B. Na and Mg	C. K and Mg	D. Al and Mg	
111. Which element has A. F	s the highest electro-nega B. He	ntivity? C. Ne	D. Na	
112. Loss of a -particle A. loss of two neutrons C. loss of two neutrons	only	B. loss of two protons of D. none of the above	nly	
113. Stable compounds A. B	in + 1 oxidation state are B. Al	e formed by C. Ga	D. Th	
114. Sodium hexametag	N	G. G.	2.1.1	
A. a cleansing agent	7 -	C. a water softner	D. an iron exchange resin	
115. The strongest acid A. B. ClO ₃ (OH) ClO ₂ (OH)	C. D.			
116. Which one among the following pairs of ions cannot be separated by H ₂ S in dilute				
hydrochloric acid? A. Bi ³⁺ , Sn ⁴⁺	B. Al ³⁺ , Hg ²⁺	C. Zn ²⁺ , Cu ²⁺	D. Ni ²⁺ , Cu ²⁺	

117. The alkane would have only the primary and tertiary carbon is

B. 2-methylbutane	C. 2, 2-dimethylpropane	D. 2, 3-dimethylbutane
ction of alcoholic silver B. ethene	nitrite with ethy1 bromid C. nitroethane	le is D. ethyl a1coho1
	Which one of the follow	ring can function as
	C. CO + HCl	D. $HCONH_2 + HCl$
wing, the most basic com	pound is	
B. Aniline $bx + c = 0$ are	C. Acetanilide	D. p-Nitroaniline
en b ² - 4c is equal to C. 2 D. 1	0,	
two lines represented by	the equation $ax^2 + 2hxy$	+ by ² = 0 to the
B. $ab = 1$	C. a = b	D. $ab = -1$
B is equal to	SO.	
B. A ^c	C.B	D. A
$nction f(x) = (x+1)^{\cot x}$	s continuous at $x = 0$, $f(0)$	0) must be defined as
B. $f(0) = e$	C. $f(0) = 1/e$	D. none of the above
f the ellipse $16x^2 + 7y^2 =$	112 is	
B. 7/16	C. $3/\sqrt{7}$	D. 3/4
e complex numbers in A	.P., then they lie on	
B. an ellipse $x = x + iy$, then $x^2 + y^2$ is	C. a straight line	D. a parabola
C. $[(a^2 - 1)^2]/(4a^2 - 1)^2$ D. none of the above		
riangle are (0, 0), (3, 0) a B. (0, 0)	nd (0, 4). Its orthocentre C. (1, 4/3)	is at D. none of the above
	44 is	
B. 4/3	C. 4/5	D. √7
	ction of alcoholic silver in B. ethene as not been so prepared. ulation? B. HCOOCH ₃ + HCl wing, the most basic come B. Aniline bx + c = 0 are en b ² - 4c is equal to C. 2 D. 1 two lines represented by B. ab = 1 B is equal to B. A ^c nction $f(x) = (x + 1)^{cot x}$ B. $f(0) = e$ The ellipse $16x^2 + 7y^2 = B$. $7/16$ The complex numbers in A B. an ellipse because $f(x) = f(x) = f(x)$ because $f(x) = f(x)$ complex numbers in A B. an ellipse because $f(x) = f(x)$ because $f(x) = f(x)$ because $f(x) = f(x)$ because $f(x) = f(x)$ and $f(x) = f(x)$ because $f(x) = f(x)$ because $f(x) = f(x)$ because $f(x) = f(x)$ is the conic $f(x) = f(x)$ is the conic $f(x) = f(x)$ because $f(x) = f(x)$ is the conic $f(x) = f(x)$ because $f(x) = f(x)$ is the conic $f(x) = f(x)$ because $f(x) = f(x)$ is the conic $f(x) =$	ction of alcoholic silver nitrite with ethyl bromid B. ethene C. nitroethane as not been so prepared. Which one of the follow ulation? B. HCOOCH ₃ + HCl C. CO + HCl wing, the most basic compound is B. Aniline C. Acetanilide bx + c = 0 are en b ² - 4c is equal to C. 2 D. 1 two lines represented by the equation $ax^2 + 2hxy$ B. $ab = 1$ C. $a = b$ B is equal to B. A^c C. B anction $f(x) = (x + 1)^{cot x}$ is continuous at $x = 0$, $f(0) = 1/e$ The ellipse $16x^2 + 7y^2 = 112$ is B. $7/16$ C. $3/\sqrt{7}$ e complex numbers in A.P., then they lie on B. an ellipse C. a straight line $f(0) = x + iy$, then $x^2 + y^2$ is C. $f(0) = 1/e$ C. $f(0)$

130. The vertices of a triangle are (0, 3), (-3, 0) and (3, 0). The co-ordinates of its orthocentre are

A. (0, 2)	B. (0, -3)	C. (0, 3)	D. (0, -2)	
131. If t is the parameter A. a [t - (1/t)]	er for one end of a focal of B. a $[t + (1/t)]$	chord of the parabola $y^2 = C$. a $[t - (1/t)]^2$	= $4ax$, then its length is D. a $[t + (1/t)]^2$	
132. The value of $\cos^2 \theta$ A. equal to 1	$\theta + \sec^2 \theta$ is always	B. less than 1		
C. greater than or equal	to 2	D. greater than 1, but le	ss than 2	
133. The number of poi = 1 and y = $\sin x$, $-2\pi \le$	nts of intersection of 2y $x \le 2\pi$ is			
A. 2 B. 3	C. 4 D. 1			
134. If $\sin \theta_1 + \sin \theta_2 +$ A. 0	$\sin \theta_3 = 3$, then $\cos \theta_1 + B$. 1	$\cos \theta_2 + \cos \theta_3 = $ C. 2	D. 3	
135. The number of sol A. 5	utions in $0 \le x \le \pi/2$ of the B. 7	he equation cos 3x tan 5x C. 6	$x = \sin 7x$ is D. none of the above	
A. 3	D. 7	C. 0	D. Holic of the above	
136. One end of a diam A. (4, -9)	eter of the circle $x^2 + y^2$. B. (-9, -4)	-4x - 2y - 4 = 0 is $(5, -6)C. (4, 9)$	o, the other end is D. (9, -4)	
137. The set of values or real and negative consist	of m for which both the rosts of all m, such that	poots of the equation x^2 -	(m+1)x + m + 4 = 0 are	
A. $-3 \ge m$ or $m \ge 5$	B. $-3 < m \le 5$	C. $-4 < m \le -3$	D. $-3 < m \le -1$	
138. Let $P_n(x) = 1 + 2x$ number of real roots of	$+3x^{2} + \dots + (n+1) x^{n}$ P(x) = 0 is	be a polynomial such that	at n is even. Then the	
A. 1	B. n	C. 0	D. none of the above	
139. The next term of th is	ne sequence 1, 3, 6, 10,			
A. 16 B. 13	C 15 D. 14			
140. If H is the harmon A. $(P + Q)/PQ$	ic mean between P and Q B. PQ/(P + Q)	Q, then H/P + H/Q is C. 2	D. none of the above	
141. A class is composed of two brothers and six other boys. In how many ways can all the boys be seated at a round table so that the two brothers are not seated besides each other?				
A. 4320	B. 3600	C. 720	D. 1440	
142. The binomial coef A. 15	ficient of the 4th term in B. 20	the expansion of $(x - q)^5$ C. 10	is D. 5	
143. For $x \ne 0$, the term independent of x in the expansion of $(x - x^{-1})$ is equal to				

A.
$${}^{2n}C_n$$

B.
$$[(-1)^n]$$
 $[^{2n}C_n]$

$$B. \, \left[\left(-1 \right)^n \right] \, \left[^{2n} C_n \right] \qquad \qquad C. \, \left[\left(-1 \right)^n \right] \, \left[^{2n} C_{n \, + \, 1} \right] \qquad \quad D. \, \, ^{2n} C_{n \, + \, 1}$$

$$D^{2n}C_{n+1}$$

$$a_1$$
 b_1 kc_1
 a_2 kb_2 c_2

D.
$$\begin{vmatrix} ka_1 & b_1 & c_1 \\ a_2 & kb_2 & c_2 \\ a_3 & b_3 & kc_3 \end{vmatrix}$$

A. 2/3 B. 8/3 C. 16/3 D. 1/3

$$A. | A | = 2 | B |$$

$$B. |A| = |B|$$

B.
$$|A| = |B|$$
 C. $|A| = -|B|$

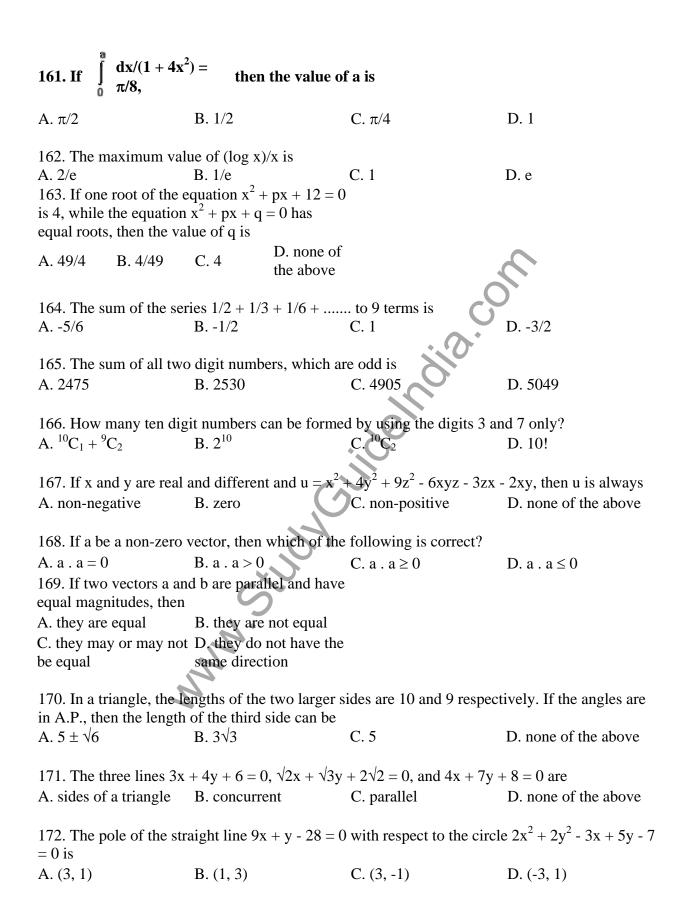
D. none of the above

147. Equation of the sphere with centre (1, -1, 1) and radius equal to that of sphere $2x^2 + 2y^2 +$

$$2z^{2} - 2x + 4y - 6z = 1$$
 is
A. $x^{2} + y^{2} + z^{2} - 2x + 2y - 2z + 1 = 0$

B.
$$x^2 + y^2 + z^2 + 2x - 2y + 2z + 1 = 0$$

C. $x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0$


D. none of the above

148. Equation of the line passing through the point (1, 1, 1) and parallel to the plane 2x + 3y +3z + 5 = 0 is

A.
$$(x - 1)/1 = (y - 1)/2 = B$$
. $(x - 1)/-1 = (y - 1)/1$
 $(z - 1)/1 = (z - 1)/-1$

C.
$$(x-1)/3 = (y-1)/2 = D$$
. $(x-1)/2 = (y-1)/3 = (z-1)/1$

149. If a, b, c are constants such that a and c are of opposite signs and r is the correlation coefficient between x and y, then the correlation coefficient between ax + b and cy + d is					
A. (a/c)r	B. r	C r	D. (c/a)r		
150. From a deck of 52 A. 3/13	2 cards, the probability of B. 1/4	of drawing a court card is C. 4/13	D. 1/13		
151. A binomial probabilitial, is	bility distribution is syn	nmetrical if p, the probabi	lity of success in a single		
A. > 1/2	B. < 1/2	C. < q, where $q = 1 - p$	D. = 1/2		
152. The binomial distribution $A. (4/5 + 1/5)^{50}$	ribution whose mean is B. $(4/5 + 1/5)^{1/50}$	10 and S.D. is $2\sqrt{2}$ is C. $(4/5 + 5/1)^{50}$	D. none of the above		
		6. (1/3 + 3/1)	D. Holle of the above		
153. $\tan (\cot^{-1}x)$ is equ A. $\pi/4 - x$	B. cot (tan ⁻¹ x)	C. tan x	D. none of the above		
154. If $f(x)$ is an odd period 2, then $f(4)$ equal	eriodic function with	C. tall X	D. Holle of the above		
A 4 B. 4	C. 2 D. 0				
155. The function $f(x) = [(x^3 + x^2 - 16x + 20)]/(x - 2)$ is not defined for $x = 2$. In order to make $f(x)$ continuous at $x = 2$, $f(2)$ should be defined as					
A. 0	B. 1	C 2	D. 3		
156. Let f and g be differentiable functions satisfying $g'(a) = 2$, $g(a) = b$, and $fog = 1$ (identity function). Then $f'(b)$ is equal to					
A. 0	B. 2/3	C. 1/2	D. none of the above		
157. A cone of maximum the cone to the diameter		in a given sphere. Then the	ne ratio of the height of		
A. 3/4	B. 1/3	C. 1/4	D. 2/3		
158. The function is decreasing in the interval					
A. $-\infty < x < -10/3$	B. $0 < x < \infty$	C. $-3 < x < 3$	D. $-10/3 < x < 0$		
159. Suppose that $f''(x)$ is continuous for all x and $f(0) = f'(1)$. If $\int_{0}^{1} tf'(t) dt = 0,$					
then the value of $f(1)$ is					
A. 3 B. 2	C. 9/2 D. none of the above				
160. Integrating factor A. sin x	of differential equation B. sec x	$\cos x (dy/dx) + y \sin x =$ C. $\tan x$	1 is D. cos x		
		- · · · · · · · · · · · · · · · · · · ·			

173. If the sets A and B then	are defined as $A = \{ (x, $	$y): y = e^{x}, x \in \mathbb{R}, B =$	$\{ (x, y) : y = x, x \in R \},$	
$A. A \cup B = A$	B. $A \cap B = \emptyset$	$C. A \subseteq B$	D. B \subseteq A	
174. The value of the integral $ \begin{cases} f(x) & \text{if } (x) \\ -x & \text{integral} \end{cases} $	/[f(x) + f(2a dx is equal			
A. a B. 2a	C. 3a D. none of the above			
175. The slope of the no	ormal at the point (at ² , 2a	at) of the parabola $y^2 = 4a$	ax is	
A. 1/t	B. t	C t	D. 1/t	
176. If z is any complex A. 2	x number such that $ z + 4 $ B. 6	$4 \mid \leq 3$, then the greatest $C.0$	value of z + 1 is D 6	
11. 2	D . 0	C. 0	D. 0	
177. The equation cos x	$x + \sin x = 2 \text{ has}$:(0		
A. only one solution		B. two solutions		
C. no solution		D. infinite number of so	olutions	
178. The most general value of θ , which satisfies both the equations $\tan \theta = -1$ and $\cos \theta = 1/\sqrt{2}$ will be				
A. $n\pi + (7\pi/4)$	B. $n\pi + (-1)^n (7\pi/4)$	C, $2n\pi + (7\pi/4)$	D. none of the above	
179. A spherical ball of radius r placed on the ground subtends an angle of 60° at a point A of the ground. Then the distance of the point A from the centre of the ball is				
A. 3r B. 2r	C. 4r D. none of the above			
180. In a triangle ABC, $a^2 \cos 2B + b^2 \cos 2A + 2ab \cos (A - B)$ is equal to				
A. c	$B.e^2$	C. 2c	D. none of the above	