

Register			
Number			

Part III — MATHEMATICS

(English Version)

Time Allowed: 3 Hours]

[Maximum Marks : 200

SECTION - A

N. B.: i) All questions are compulsory.

ii) Each question carries one mark.

iii) Choose the most suitable answer from the given four alternatives. $40 \times 1 = 40$

- 1. If $\overrightarrow{PR} = 2\overrightarrow{l} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{QS} = -\overrightarrow{l} + 3\overrightarrow{j} + 2\overrightarrow{k}$ then the area of the quadrilateral \overrightarrow{PQRS} is
 - a) $5\sqrt{3}$

b) 10√3

c) $5\frac{\sqrt{3}}{2}$

- d) $\frac{3}{2}$.
- 2. If $\overrightarrow{a} = \overrightarrow{l} 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 3\overrightarrow{l} + \overrightarrow{j} + 2\overrightarrow{k}$ then a unit vector perpendicular to \overrightarrow{a} and \overrightarrow{b} is
 - a) $\frac{7+7+k}{\sqrt{3}}$

b) $\frac{\overrightarrow{l} - \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$

c) $\frac{-\overrightarrow{l}+\overrightarrow{j}+2\overrightarrow{k}}{\sqrt{3}}$

d) $\frac{\overrightarrow{l}-\overrightarrow{j}-\overrightarrow{k}}{\sqrt{3}}$

[Turn over

3. The point of intersection of the lines

$$\overrightarrow{r} = \left(-\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} \right) + t \left(-2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \right) \text{ and}$$

$$\overrightarrow{r} = \left(2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k} \right) + s \left(\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} \right) \text{ is}$$

a) (2, 1, 1)

b) (1, 2, 1)

c) (1, 1, 2)

d) (1, 1, 1).

4. The distance from the origin to the plane \vec{r} . $(2\vec{i} - \vec{j} + 5\vec{k}) = 7$ is

a) $\frac{7}{\sqrt{30}}$

b) $\frac{\sqrt{30}}{7}$

c) $\frac{30}{7}$

d) $\frac{7}{30}$.

5. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular unit vectors then

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$
 is

a) 3

b) 9

c) 3√3

d) √3.

6. If the line 5x-2y+4k=0 is a tangent to $4x^2-y^2=36$, then k is

a) $\frac{4}{9}$

b) $\frac{2}{3}$

c) $\frac{9}{4}$

d) $\frac{81}{16}$.

7. The eccentricity of the hyperbola with asymptotes x + 2y - 5 = 0,

$$2x - y + 5 = 0$$
 is

a) 3

b) √2

c) $\sqrt{3}$

d) 2.

8. The point of contact of the parabola $y^2 = 4ax$ and the tangent y = mx + c is

a)
$$\left(\frac{2a}{m^2}, \frac{a}{m}\right)$$

b)
$$\left(\frac{a}{m^2}, \frac{2a}{m}\right)$$

c)
$$\left(\frac{a}{m}, \frac{2a}{m^2}\right)$$

d)
$$\left(-\frac{a}{m^2}, -\frac{2a}{m}\right)$$
.

9. The slope of the normal to the curve $y = 3x^2$ at the point whose x-coordinate = 2, is

a)
$$\frac{1}{13}$$

b)
$$\frac{1}{14}$$

c)
$$-\frac{1}{12}$$

d)
$$\frac{1}{12}$$

10. If $s = t^3 - 4t^2 + 7$, the velocity when the acceleration is zero, is

a)
$$\frac{32}{3}$$
 m/sec

b)
$$-\frac{16}{3}$$
 m/sec

c)
$$\frac{16}{3}$$
 m/sec

d)
$$-\frac{32}{3}$$
 m/sec.

11. If p is true and q is false then which of the following is not true?

a)
$$p \rightarrow q$$
 is false

b)
$$p \lor q$$
 is true

c)
$$p \wedge q$$
 is false

d)
$$p \leftrightarrow q$$
 is true.

12.	Given .	E(X +	C) =	= 8	and	E	(X - C)	:) =	12	then	the	value	of	\boldsymbol{C}	is
<i></i> .	CITCII.	A) (21 ·	\cup , -	- 0	and		(, , —		α_{1C11}	CLIC	rauc	O.	\sim	10

- a) 2
- b) 4
- c) 4
- d) 2.

13. In 5 throws of a die, getting 1 or 2 is a success. The mean number of successes

is

- a) $\frac{5}{3}$
- b) $\frac{3}{5}$
- c) $\frac{5}{9}$
- d) $\frac{9}{5}$

14. If
$$f(x)$$
 is a p.d.f. of a normal distribution with mean μ then $\int_{-\infty}^{\infty} f(x) dx$ is

a) 1

b) 0.5

c) 0

d) 0·25.

15. If X is a discrete random variable then
$$P(X \ge a)$$
 is equal to

- a) P(X < a)
- b) $1 P(X \le a)$
- c) 1 P(X < a)
- **d)** 0.

1/6. If $A = [2 \ 0 \ 1]$ then rank of AA^T is

a) 1

b) 2

c) 3

d) 0.

17. If the matrix $\begin{bmatrix} -1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5 \end{bmatrix}$ has inverse then

- a) k is any real number
- b) k = -4
- c) $k \neq -4$
- d) $k \neq 4$

18. If A is a matrix of order 3, then det (kA)

- a) $k^3 \det(A)$
- b) $k^2 \det(A)$
- c) k det (A)
- d) det (A)

19. Every homogeneous system

- a) is always consistent
- b) has only trivial solution
- c) has infinitely many solutions
- d) need not be consistent.

- 20. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then $(\overrightarrow{a} + \overrightarrow{b})$ is a unit vector if
 - a) $\theta = \frac{\pi}{3}$
 - b) $\theta = \frac{\pi}{4}$
 - c) $\theta = \frac{\pi}{2}$
 - d) $\theta = \frac{2\pi}{3}$.
- 21. A particular integral of $(D^2 4D + 4)y = e^{2x}$ is
 - a) $\frac{x^2}{2} e^{2x}$

b) xe^{2x}

c) xe^{-2x}

- d) $\frac{x}{2} e^{-2x}$.
- 22. The order and degree of the differential equation $y' + (y'')^2 = x (x + y'')^2$ respectively are
 - a) 1, 1

b) 2, 1

c) 2.2

- d) 1.2
- 23. Which of the following is a contradiction?
 - a) $p \lor q$
 - b) $p \wedge q$
 - c) $p \lor (\sim p)$
 - d) $p \wedge (\sim p)$.

 $2\overline{4}$: The order of [7] in $(Z_9, +9)$ is

a) 9

b) 6

c) 3

d) 1.

25. Which of the following is correct?

- a) An element of a group can have more than one inverse
- b) If every element of a group is its own inverse, then the group is Abelian
- c) The set of all 2×2 real matrices forms a group under matrix multiplication
- d) $(a * b)^{-1} = a^{-1} * b^{-1}$ for all $a, b \in G$.

26. The volume generated by rotating the triangle with vertices at (0, 0), (3, 0) and (3, 3) about x-axis, is

-a) 18π

b) 2π

c) 36π

പ് 9π

27. The arc length of the curve y = f(x) from x = a to x = b is

a)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

b)
$$\int_{a}^{b} \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x$$

c)
$$\int_{0}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$$

d)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$$
.

- 28. The surface area of the solid of revolution of the region bounded by $y \neq 2x$, x = 0 and x = 2 about x-axis, is
 - a) $8\sqrt{5} \pi$
 - b) $2\sqrt{5} \pi$
 - c) $\sqrt{5} \pi$
 - d) $4\sqrt{5} \pi$.
- 29. The differential equation obtained by eliminating a and b from $y = ae^{3x} + be^{-3x}$

is

a)
$$\frac{d^2y}{dx^2} + ay = 0$$

b)
$$\frac{d^2y}{dx^2} - 9y = 0$$

c)
$$\frac{d^2y}{dx^2} - 9 \frac{dy}{dx} = 0$$

d)
$$\frac{d^2y}{dx^2} + 9x = 0$$
.

- 30. Integrating factor of $\frac{dy}{dx} + \frac{1}{x \log x} \cdot y = \frac{2}{x^2}$ is
 - a) *e* x

b) $\log x$

c) $\frac{1}{x}$

- d) e^{-x}
- 31. Which of the following functions is increasing in (0, ∞)?
 - a) e^x

b) $\frac{1}{x}$

c) $-x^2$

d) x^{-2}

- 32. One of the critical numbers of $x^{3/5}$ (4 x) is
 - a) 4

b) $\frac{4}{3}$

c) 0

- d) $\frac{3}{5}$.
- 33. The percentage error in the 11 th root of the number 28 is approximately
 times the percentage error in 28.
 - a) $\frac{1}{28}$

b) $\frac{1}{11}$

c) 11

- d) 28
- 34. The curve $9y^2 = x^2 (4 x^2)$ is symmetrical about
 - a) y-axis only
 - b) x-axis only
 - c) y = x
 - d) both the axes
- 35. The value of $\int_{0}^{\pi} \sin^{4} x \, dx$ is
 - a) $\frac{3\pi}{16}$
 - b) $\frac{3}{16}$
 - c) (
 - d) $\frac{3\pi}{8}$

36. The polar form of the complex number $(i^{25})^3$ is

- a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$
- b) $\cos \pi + i \sin \pi$
- c) $\cos \pi i \sin \pi$
- d) $\cos \frac{\pi}{2} i \sin \frac{\pi}{2}$.

37. If $z_1 = 4 + 5i$ and $z_2 = -3 + 2i$ then $\frac{z_1}{z_2}$ is

a) $\frac{2}{13} - \frac{22}{13}i$

b) $\frac{-2}{13} + \frac{22}{13}$

c) $\frac{-2}{13} - \frac{23}{13} i$

d) $\frac{2}{13} + \frac{22}{13} i$

38. The value of $\sqrt{z\bar{z}}$ is

a) $|z|^2$

b) |z|

c) 2 | z |

d) $2 | z |^2$

39. If a = 3 + i and z = 2 - 3i then the points on the Argand diagram representing az, 3az and -az are

- a) vertices of a right-angled triangle
- b) vertices of an equilateral triangle
- c) vertices of an isosceles triangle
- d) collinear.

40. The radius of the director circle of the conic $9x^2 + 16y^2 = 144$ is

a) √7

b) 4

c) 3

d) 5.

SECTION - B

N. B.: i) Answer any ten questions.

- ii) Question No. **55** is compulsory and choose any nine questions from the remaining.
- iii) Each question carries six marks.

 $10 \times 6 = 60$

41. Find the rank of the matrix
$$\begin{bmatrix} 3 & 1 & -5 & -1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2 \end{bmatrix}$$

42. Solve the following non-homogeneous system of linear equations by determinant method:

$$4x + 5y = 9$$
, $8x + 10y = 18$.

- 43. a) Show that the vectors $3\vec{i} 2\vec{j} + \vec{k}$, $\vec{i} 3\vec{j} + 5\vec{k}$ and $2\vec{i} + \vec{j} 4\vec{k}$ form a right-angled triangle.
 - b) A force of magnitude 5 units acting parallel to $2\vec{i} 2\vec{j} + \vec{k}$ displaces the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.
- 44. Show that $\begin{bmatrix} \overrightarrow{a} \overrightarrow{b}, \overrightarrow{b} \overrightarrow{c}, \overrightarrow{c} \overrightarrow{a} \end{bmatrix} = 0$
- 45. Find the square root of (-8-6i).
- 46. The headlight of a motor vehicle is a parabolic reflector of diameter 12 cm and depth 4 cm. Find the position of the bulb on the axis of the reflector for effective functioning of the headlight.

- 47. a) Using Rolle's theorem find the value of c for $f(x) = \sqrt{1-x^2}$, $-1 \le x \le 1$.
 - b) Obtain the Maclaurin's series for e^x .
- 48. Evaluate: $\lim_{x \to 1} x^{\frac{1}{x-1}}$.
- 49. Given $w = \frac{x}{x^2 + y^2}$ where $x = \cos t$; $y = \sin t$. Find $\frac{dw}{dt}$.
- 50. Evaluate: $\int_{0}^{2\pi} \sin^{9} \frac{x}{4} dx.$
- 51. Solve: $\frac{dy}{dx} + \frac{4x}{x^2 + 1} y = \frac{1}{(x^2 + 1)^2}$.
- 52. Construct the truth table for $\sim [(\sim p) \land (\sim q)]$.
- 53. Show that $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$.
- 54. In a Poisson distribution if P(X=2) = P(X=3), find P(X=5).

[Given $e^{-3} = 0.050$].

55. a) Find the mean and variance for the probability density function

$$f(x) = \begin{cases} \frac{1}{24} & , -12 \le x \le 12 \\ 0 & , \text{ otherwise} \end{cases}$$

OR

b) Simplify: $\frac{(\cos \theta + i \sin \theta)^4}{(\sin \theta + i \cos \theta)^5}$

SECTION - C

- N. B.: i) Answer ten questions.
 - ii) Question No. **70** is compulsory and choose any *nine* questions from the remaining.
 - iii) Each question carries ten marks.

 $10 \times 10 = 100$

56. Solve by matrix inversion method:

$$2x-y+3z=9$$
, $x+y+z=6$, $x-y+z=2$.

- 57. Prove by vector method: Altitudes of a triangle are concurrent.
- 58. Find the vector and Cartesian equations of the plane through the points (1, 2, 3) and (2, 3, 1) and perpendicular to the plane 3x 2y + 4z 5 = 0.
- 59. Find the axis, vertex, focus, equation of the directrix, equation of the latus rectum and length of the latus rectum of the parabola $y^2 + 8x 6y + 1 = 0$ and hence sketch its graph.
- 60. An arch is in the form of a semi-ellipse whose span is 48 feet wide. The height of the arch is 20 feet. How wide is the arch at a height of 10 feet above the base?
- 61. Find the equation of the rectangular hyperbola which has one of its asymptotes x + 2y 5 = 0 and passes through the points (6, 0) and (-3, 0).

- 62. Show that the equation of the normal to the curve $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$ at θ is $x \cos \theta y \sin \theta = a \cos 2\theta$.
- 63. Trace the curve $y = x^3$.
- 64. Find the area between the curve $y = x^2 x 2$, x-axis and the lines x = -2, x = 4.
- 65. Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at a distance a and b from the centre of the sphere is $2\pi r$ (b-a) and hence deduce the surface area of the sphere (b>a).
- 66. Solve: $(D^2 2D + 2)y = \sin 2x + 5$.
- 67. The sum of Rs. 1,000 is compounded continuously at the nominal rate of interest 4 per cent per annum. In how many years will the amount be twice the original principal? ($\log_e 2 = 0.6931$).
- 68. Prove that the set of four functions f_1 , f_2 , f_3 , f_4 on the set of non-zero complex numbers $(-\{0\})$ defined by $f_1(z) = z$, $f_2(z) = -z$,

 $f_3(z) = \frac{1}{z}$, $f_4(z) = -\frac{1}{z}$, $\forall z \in \mathbb{C} - \{0\}$ forms an Abelian group with respect to composition of functions.

69. A random variable X has the following probability mass function:

*	0	1	2	3	4	5	6
P(X=x)	k	3k	5 <i>k</i>	7k	9k	11 <i>k</i>	13 <i>k</i>

- i) Find k
- ii) Evaluate P(X < 4), $P(X \ge 5)$ and $P(3 < X \le 6)$
- iii) Find the smallest value of x for which $P(X \le x) > \frac{1}{2}$.
- 70. a) If α and β are the roots of $x^2 2x + 4 = 0$, prove that $\alpha^n \beta^n = i \ 2^{n+1} \sin \ \frac{n\pi}{3} \text{ and deduce } \alpha^9 \beta^9.$

OR

b) A poster is to have an area of 180 cm² with 1 cm margins at the bottom and sides and a 2 cm margin on the top. What dimensions will give the largest printed area?