Model Question Paper

B.Tech, B.Des and UG programs in Health Sciences

Part 1 – Physics

1. A bus travels at 110 km/hr (kilometers per hour) on open highway. Its s		highway. Its speed in			
	meteres per se	econd is			
	a) 30.6m/s	b) 60.2m/s	c) 40m/s	d) 50.4m/s	
2.	A spheromete	r has 20 threads per c	m.Its circular scale ha	ns 100 divisions.The least	
	count of the sp	phere is			
	a) 5µm	b) 50μm	c) 0.5µm	d) 0.05μm	
			:20)	
3.	Which one of	the following physica	I quantities does not	have unit?	
	a) luminous in	tensity	b) momentum		
	c) current		d) refractive index		
			(0)		
4.	The prefix at	to means	.		
	a)10 ⁻²¹	b)10 ⁻¹⁵	c)10 ⁻¹⁸	d) 10 ⁻¹²	
		.67)		
5.	To enable a particle to describe circular motion the angle between its velocity and				
	acceleration is	given by			
	a) 180°	p) 90 °	c)45°	d) 0°	
6.	Torque per unit moment of inertia is equal to				
	a) angular velo	ocity	b) angular acceleration		
	c) radius of gy	ration	d) inertia		
7.	If momentum	is decreased by 20%	kinetic energy will de	crease by	
	a)40%	b) 18%	c) 36%	d) 8%	

8.	Average density of the earth					
	a) does not depend o	on g	b) is a complex function	of g		
	c) is directly proporti	onal to g	d) is inversely pro	oportional to g		
9.	A bomb blasts on mo	oon. Its sound v	vill be heard on earth afte	•		
	a) 3,7min		b) 10 min			
	c) 138min		d) sound will nev	er be heard		
10.	If a tensile force is suddenly removed from a wire then its temperature will					
	a) decrease		b) increase			
	c) become 0		d) remains consta	int		
			. ?			
11.	The physical quantity conserved in simple harmonic motion is					
	a) time period		b) total energy			
	c) displacement		d) force			
			:0			
12.	Two waves each of loudness L superimpose to produce beats. The maximum					
	loudness of beats wil	ll be	9			
	a) 4L	b) L	c) 2L	d) 5L		
		W)				
13.		elocity greater	than the escape velocity,	which trajectory will it		
	follow?					
	a) elliptic		b) hyperbolic			
	c) vertical straight		d) parabolic			
14.		A body of weight W ₁ is suspended from the ceiling of a room through a chain of				
	weight W ₂ . The ceili	ng pulls the cha	ain by a force			
	a) W ₁	b) W ₂	c) W ₁ +W ₂	d) $\frac{W_1 + W_2}{2}$		

15.	Two gases having same pressure P and volume V are mixed at a temperature T.If the			
	mixture is at a tempe	erature T and oc	cupies the same vol	ume then pressure of the
	mix would be			
	a) P	b) 2P	c) P/2	d) 3P
16.	The specific heat cap	acity of body de	pends on	
	a) the heat given		b) the temperature	raised
	c) man of the body		d)the mater	ial of the body.
17.	Two systems are in t	hermal equilibriu	um. The quantity wh	nich is common for them is
	a) heat	b) momentum	c) specific heat	d) temperature
				> *
18.	When an unpolarized	d light of intensit	ty I_0 is incident on a	polarizing sheet, the
	intensity of light whi	ch does not get t	transmitted is	
	a) I ₀ /2	b)I ₀ /4	c) zero	d) I ₀
19.		after suffering r	eflection from a mir	ror.The angle of incidence
	is			
	a) 90°	b) 30°	c) 60°	d) 45°
		W)		
20.		r, viewing obliqu	ely a fisher-man sta	nding on the bank of a lake,
	does appear as	•		
	a) slightly shorter		b) taller	
	c) with no change in	height	d) with half the ori	ginal height.
24		1		
21.	Fraunhofer lines obs	erved in the sola	ir spectrum are due	to
	a) photosphere			
	b) Corona			
	c) ozone layer			
	d) layer of cooler gas	ses between pho	otosphore and chroi	nospnere

22.	A girl is standing 7m from a plane mirror. The distance of the girl from her image in				
	the mirror is				
	a) 3.5 m	b) 7 m	c) 10.5 m	d) 14 m	
23.	A man with norm	ial near noint (25 cm)	reads a hook using a	magnifying glass of focal	
25.			hich he can read the b		
	-		men ne can read the b	ook when viewing	
	through the magi		\ 4.6	N 2.5	
	a) -4.2cm	b) -3.6cm	c) -1.6cm	d) -2.5cm	
24.	A magnet of pole	strength <i>m</i> and leng	th / is broken into two	pieces. The pole	
	strength of each	piece is		5	
	a) m	b)m/2	c) 2m	d)m/4	
			0		
25.	The resultant flow	w of current in a cond	luctor in the absence	of electric field is	
	a) minimum		b) zero		
	c) maximum		d) has a negative	e value	
			<i>)</i>		
26.	Moderator is use	d to)		
	a) accelerate the	bombarding neutron	S		
	b) slow down the	bombarding neutror	าร		
	c) to eject more e	electrons			
	d) to arrest the n	uclear reaction			
	<	2,			
27.	The decay consta	ant which is the recip	rocal of the time dura	tion for which the	
	number of the at	oms of radioactive su	bstance falls to		
	a) 17% of its origi	nal value	b) 27% of its or	ginal value	
	c) 37% of its origi	nal value	d) 47% of its ori	ginal value	
28.	Electron behaves	as wave because the	ey can be		
	a) deflected by ar		b) deflected by	magnetic field	
	c) diffracted by a		d) they ionise a	_	

Man. Cildellia. Coll.

29.	The speed of X-rays	is the same as t	hat of v	isible light. Hence its	s wavelength is	
	a) same as that of v	isible light		b) larger than that	of visible light	
	c) smaller than that	of visible light	d) equ	al to that of visible I	ight	
30.	In a superconducto	r, critical magne	tic field			
	a) increases if temp	erature decrease	es	b) does not depend	d on temperature	
	c) increases if temper	erature increase	sd) rem	ains constant		
31.	For a particle of ma	ss m moving wit	h kineti	c energy E the debro	oglie wavelength is	
	a) h/2mE	b) hv2mE		c) h/V2mE	d) hv2/mE	
32.	A band rejection filt	er with a sharp i	narrow	response suitable fo	r suppressing	
	heterodynes in the audio stages of a receiver is called					
	a) an envelope dete	ector		b) a discriminator		
	c) a radio detector			d) an audio notch f	ilter	
			• (>		
33.	The logical equation	ı y=A.B represen	its	,		
	a) AND gate	b) OR gate	9	c) XOR gate	d) NAND gate	
		XX)			
34.	In a ferroelectric ma	aterial, as the ap	plied fie	eld is gradually reduc	ced to zero, the	
	polarization still left	is known as				
	a) remanent polariz	ation		b) coercive polariza	ation	
	c) zero polarization			d) positive polariza	tion.	
	The state of the s					
35.	6.4 × 10–19 joule is	approximately				
	a) 4 electron volt	b) 6 electron	volt	c) 8 electron volt	d) 1 electron	

Part 2 - Chemistry

36.	The bond length of Br-Br in Br ₂ molecule is equal to				
	a) 0.74 A°		b) 1.54 A°		
	c) 1.98 A°		d) 2.28 A°		
37.	The structure of NO ₃	ion is			
	a) triangle		b) tetrahedral		
	c) equilateral triangle	d) pl	anar		
38.	Which is used as flux	in metallurgy ?	ç. O	*	
	a) CaF ₂	b) SF	6		
	c) UF ₆		d) NaF		
			20.		
39.	The major constituen	ts of mish metal are			
	a) Ce – 45%, Fe -20% and impurities				
	b) Ce – 50%, La -25%, Nd -15% and Pr – 10%				
	c) Ce – 60% and La -40%				
	d) La - 40%, Nd – 10% and Ce -50%				
		0,			
40.	The number of cation	s produced by Mohr	's salt in solution is		
	a) 1	b) 2	c) 3	d) 4	
	4	*			
41.	μ = 4.90 Bohr magnet				
	a) [Ni(NH ₃) ₄] ²⁺ c) [FeF ₆] ⁴⁻	b) [N	li(CN) ₄] ²⁻		
	c) [FeF ₆] ⁴⁻		d) [Fe(CN) ₆] ³⁻		
42.	The half life period of	cobalt 60 is 5.26yea	rs. Calculate the percer	ntage activity after 4	
	years.				
	a) 75%	b) 59%	c) 15%	d) 72%	

43.	The number of CsCl units per unit cell of it is					
	a) 1	b) 2	c) 3	d) 4		
44.	The value of el	ectrical resistance at	super conductivity	state is		
	a) 100	b) 0	c) Low	d) High		
45.	Calculate the change of entropy for the process, water (liquid) to water (vapour)					
	involving ΔH_{va}	₀ = 40850 JmoΓ¹ at 37	73 <i>K</i> .			
	a) $\Delta S_{\text{vap}} = 98.5 \text{ J}$	a) $\Delta S_{\text{vap}} = 98.5 \text{ JK}^{-1} \text{mol}^{-1}$		b) $\Delta S_{\text{vap}} = 109.52 \text{ JK}^{-1} \text{mol}^{-1}$		
	c) $\Delta S_{\text{vap}} = 89 \text{ JK}^{-1}$	lmol ⁻¹	d) $\Delta S_{\text{vap}} = 72 \text{ JK}^{-1} \text{m}$	nol ⁻¹		
			•.	<i>?</i>		
46.	The unit of act	vation energy is	>			
	a) Sec ⁻¹	b) JK ⁻¹ mol ⁻¹	c)Jmol ⁻¹	d)K ⁻¹ mol ⁻¹		
			(7)			
47.	The number of	moles of H ₂ O in one	e litre is			
	a) 50.5	b) 55	c) 55.05	d) 55.55		
),	9			
48.	Calculate the p	Calculate the pH of 0.1M CH ₃ COOH solution. Dissociation constant of acetic acid is				
	1.8X10 ⁻⁵ M.	10	•			
	a) 2.87	b) 3.52	c) 2.62	d) 6.54		
49.	$\Lambda c = \mu c for$	13				
	a) NaCl	b) KCl	c) KNO ₃	d) All of these		
	3					
50.	In a first order	In a first order reaction, it takes 40.5 minutes for the reactant e to be 24%				
	decomposed. F	decomposed. Find the rate of the reaction.				
	a) 9.4x10 ⁻³ min	1	b)7.1x10 ⁻³	³ min ⁻¹		
	c) 25.2x10 ⁻³ mir	1 ⁻¹	d) 10.5x1	0 ⁻³ min ⁻¹		
51.	The standard e	mf of Zn-Cu voltaic	cell is			

	a) 2.1V	b) 2.8V	c) 1.2V	d) 1.1V		
52.	Geometrical is	somerism is ext	nibited by (i) 1-	pentene (ii) 2-penten	e (iii) 2-chloro-2-	
	pentene (iv) 3	-methyl-2-pent	tene			
	a) (i) and (ii)			b) (ii) and (iii)		
	c) (iii) and (iv)		d) (ii),	(iii) and (iv)		
53.	Equatorial alco	ohol is more st	able than axial	alcohol to an extent o	of	
	a) 11 Kcal	b) 0.7	Kcal	c) 11.7 Kcal	d) 10.3 Kcal	
					0	
54.	A compound t	hat is positive	for iodoform t	est is		
	a) 1-pentanol	b) 2-pe	entanol	c) 3-pentanol	d) Pentanol	
				0.		
55.	Which one of	the following is	optically activ	e?		
	a) n-butyl alcohol			b) Iso butyl alcohol		
	c) 2-butanol			d) tertiary butyl alco	hol	
				•		
56.	The mechanism involved in the preparation of glycol from 1,2-dihaloethane using					
	aqueous Na ₂ C	O_3 is	O			
	a) S _N ¹ attack b	y OH-	22	b) S_N^2 attack by Br-		
	c) S_N^2 attack by OH-					
		6				
57.		following is the	strongest acid	?		
	a) C ₆ H ₅ CH ₂ OH	72	b) C ₆ H ₉	₅COCH ₃		
	a) $C_6H_5CH_2OH$ c) C_6H_5OH			d) CH₃OH		
58.	Which among	the following h	nas both local a	naesthetics and antis	eptic properties?	
	a) Benzyl benz	zoate		b) Phenol		
	c) Benzyl alcoh	hol		d) n-propyl alcohol		

	ethod of detection and estimation of alkoxy			
a) Alkyl halide + sodium alkoxide	b) Natural products + excess of HI			
c) Ether + O ₂	d) Alcohol +acid			
Derivatives of ammonia act as				
a) Nucleophiles	b) Electrophiles			
c) Hydrophiles	d) Lyophiles			
Which order of arrangement is corr	rect in terms of the strength of the acid?			
a) CH₃CH₂COOH>CH3COOH <hcooh<clch₂cooh< td=""></hcooh<clch₂cooh<>				
b) CICH ₂ COOH <hcooh <ch<sub="">3COOH</hcooh>	I <ch₃ch₂cooh< td=""></ch₃ch₂cooh<>			
c) CH ₃ CH ₂ COOH <ch<sub>3COOH<hcooh<cich<sub>2COOH</hcooh<cich<sub></ch<sub>				
d) HCOOH> CH ₃ CH ₂ COOH <ch<sub>3COO</ch<sub>	DH> CICH₂COOH			
$CH_3MgI + CO_2 \rightarrow A \rightarrow B$, B is	:0			
a) HCOOH	b) CH₃COCOOH			
c) CH₃COOH	d) CH₃CHO			
83				
Basic strength of amines is in the or	der of			
a) $NH_3>CH_3NH_2>(CH_3)_2NH$	b) (CH ₃) ₂ NH>CH ₃ NH ₂ >NH ₃			
c) CH ₃ NH ₂ >(CH ₃) ₂ NH>NH ₃	d) NH ₃ >(CH ₃) ₂ NH>CH ₃ NH ₂			
$C_6H_5NH_2 + C_6H_5CHO \rightarrow C_6H_5N = CHC_6H_5$	d₅ involves			
a) Addition / elimination	b) Substitution			
c) Addition	d) Elimination			
Which among the following contain	ns triglyceride ?			
	group? a) Alkyl halide + sodium alkoxide c) Ether + O ₂ Derivatives of ammonia act as a) Nucleophiles c) Hydrophiles Which order of arrangement is corr a) CH ₃ CH ₂ COOH>CH3COOH <hcoo b)="" cich<sub="">2COOH<hcooh< br=""> c) CH₃CH₂COOH<ch<sub>3COOH<ch<sub>3COOH c) CH₃CH₂COOH<ch<sub>3COOH<ch<sub>3COO d) HCOOH> CH₃CH₂COOH<ch<sub>3COO CH₃MgI + CO₂ → A → B, B is a) HCOOH c) CH₃COOH Basic strength of amines is in the or a) NH₃>CH₃NH₂>(CH₃)₂NH>NH₃ C₆H₅NH₂ + C₆H₅CHO→C₆H₅N=CHC₆H a) Addition / elimination c) Addition</ch<sub></ch<sub></ch<sub></ch<sub></ch<sub></hcooh<></hcoo>			

b) Cooking oil

d) Albumin

a) Wax

c) Essential oil

66.	5. The medicines which prevent nausea, vomiting and motion sickness is	
	a) Antibiotics	b) Antacids
	c) Antispasmodics	d) All of these
67.	Hot drink cups are made u	p of
	a) polythene	b) PVC
	c) polystyrene	d) polypropylene
68.	What term is used to descr	ribe the process by which proteins are synthesised from a
	genetic code?	
	a) Reproduction	b) Replication
	c) Translation	d) Transcription
69.	To which of the following (does thymine form hydrogen bonds in DNA?
	a) Adenine	b) Thymine
	c) Cytosine	d) Guanine
70.	A drug that commonly cau	
	a) Sympathomimetics	b) Antimuscarinic agents
	c) Antibiotics	d) Antiseptics

- The differential equation of the family of curves $x^2 + y^2 2ay = 0$ where a 71. is an arbitrary constant is
 - a) $2(x^2 y^2)y' = xy$ b) $2(x^2 + y^2)y' = xy$ c) $(x^2 y^2)y' = 2xy$ d) $(x^2 + y^2)y' = 2xy$
- If $Im\left(\frac{2z+1}{iz+1}\right) = -2$, then the locus of the point representing z in the 72. complex plane is
 - a) a circle
- b) a straight line c) a paratola
- d) None of these
- Let $\overrightarrow{u} = \hat{\imath} + \hat{\jmath}$ $\overrightarrow{v} = \hat{\imath} \hat{\jmath}$, $\overrightarrow{w} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If \hat{n} is a unit vector such that 73. \vec{u} . \hat{n} =0 , \vec{v} . \hat{n} =0. Then $|\vec{w}$. $\hat{n}|$ =
 - a) 0
- b) -2

- d) 3
- If f(2) = 4 and f'(2) = 4, then $\lim_{x \to 2} \left(\frac{xf(2) 2f(x)}{x 2} \right)$ 74.

- d) 3

- If $x^y = e^{x-y}$, then $\frac{dy}{dx} =$ a) $\frac{1+x}{1+\log x}$ b) $\frac{1-\log x}{1+\log x}$
- c) not defined d) $\frac{logx}{(1+logx)^2}$
- The sum to infinity of the series $\frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \dots \dots \dots \infty$ is a) 2e-1 b) e^2 -1 c) $2e^2$ d) 2e 76.

- The equation of common tangent to the parabola $y^2 = 4ax$ and $x^2 = 4ay$ 77. is
 - a) x+y=0
- b) x-y+a=0
- c) x+y+a=0
- d) None of these

- $\lim_{n\to\infty} \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^{2x}$ is equal to 78.
- b) e

- c) 2e
- d) $2e^{2}$
- 79. The chairs at an auditorium are to be labelled with a letter and a positive integer not exceeding 100. The largest number of chairs that can be marked differently is equal to
 - a) 1600
- b) 2600
- c) 260
- d) 600
- 80. Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined by f(x) = |x| + 1. Then which of the following is true?
 - a) f is 1-1 and onto

- c) f is onto but not 1-1

- If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, a) $C = A \cos\theta B \sin\theta$ c) $C = A \sin\theta B \cos\theta$

- If $\overrightarrow{A}=4\hat{\imath}+3\hat{\jmath}+\hat{k}$, $\overrightarrow{B}=2\hat{\imath}+\hat{\jmath}+2\hat{k}$, the angle between \overrightarrow{A} and \overrightarrow{B} is given by a) $\sin^{-1}\frac{\sqrt{185}}{3}$ b) $\cos^{-1}\frac{\sqrt{185}}{3}$ c) $-\sin^{-1}\frac{\sqrt{185}}{3}$ d) $\frac{\sqrt{185}}{3\sqrt{26}}$ 82.

- 83.
- x + 2 is a factor of a) $x^4 + 2$ b) $x^4 x^2 + 12$ c) $x^4 2x^3 x + 2$
- The coefficient of x^{10} in the expansion of 84.
 - $\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \infty\right)^2 + \left(\frac{x}{1!} + \frac{x^3}{3!} + \dots + \infty\right)^2 =$

- d) None of these

- 85. In a series of observations half of them equal a and remaining half equal –a. If the S.D of the observations is 2, then |a|=
 - a) 1/n
- b) $\sqrt{2}$
- c) 2

d) $\sqrt{2}/n$

- $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots \infty =$ 86.
- b) $\frac{\sqrt{3}}{2}$

- - a) 0

b) 2

d) 3

- The principal value of $\,i^i\,$ is equal to 88.
 - a) e

- d) None of these
- A unit vector perpendicular to $-\hat{\imath}+2\hat{\jmath}+2\hat{k}$ and making equal angles with 89. $x \ and \ y$ axes can be

$$a)\frac{1}{3}(2\hat{\imath}+2\hat{\jmath}-\hat{k})$$

b)
$$\frac{1}{3}(2\hat{\imath} - 2\hat{\jmath} - \hat{k})$$

c)
$$\frac{1}{3}(2\hat{\imath} + 2\hat{\jmath} + \hat{k})$$

a)
$$\frac{1}{3}(2\hat{\imath} + 2\hat{\jmath} - \hat{k})$$
 b) $\frac{1}{3}(2\hat{\imath} - 2\hat{\jmath} - \hat{k})$ c) $\frac{1}{3}(2\hat{\imath} + 2\hat{\jmath} + \hat{k})$ d) $\frac{1}{3}(2\hat{\imath} - 2\hat{\jmath} + \hat{k})$

- The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is 90.
 - a) [2,3]
- b) [2,3)
- c) [1,2]
- d) [1,2)
- 91. The mean and the variance of a binomial distributions are 4 and 2 respectively. Then the probability of 2 sucesses is

- a) $\frac{37}{256}$
- b) $\frac{219}{256}$
- c) $\frac{128}{256}$
- d) $\frac{28}{256}$
- 92. 5 boys of class VI, 6 boys of class VII and 7 boys of class VIII sit in a row. The number of ways they can sit so that boys of the same class sit together is
 - a) (5!) (6!) (7!)
- b) (3!) (5!) (6!) (7!)
- c) 18! (5! 6! 7!)
- d) (4!)(5!)(6!)

- If $f(x) = \frac{x}{x-1}$, f(3x) in terms of f(x) is 93.
 - a) $\frac{3f(x)}{3f(x)-1}$ b) $\frac{3f(x)}{3f(x)-3}$ c) $\frac{3f(x)}{2f(x)+1}$

- The S.D of 4,5,6,7,.......13 is x, then the S.D of 14,15,...,23 is a) x b) 10x c) x+10 d) $x+\sqrt{10}$ 94.

- If $A^2 A + I = 0$, then the inverse of A is 95.
 - a) A+I
- b) A

- d) I-A
- The line y = 4x + c touches the parabola $y^2 = 4x$ if 96.
 - a) C=0

- d) 2

- The area bounded by the curves $y^2=x$ and $y=x^2$ is 97.

- d) 1
- A point diametrically opposite to the point P(1,0) on the circle 98.
 - $x^2 + y^2 + 2x + 4y 3 = 0$ is
 - a) (3,-4)
- c) (-3,-4)
- d) (3,4)
- 99. The third term of a G.P is 15. Then the product of its first five terms is
 - a) $(15)^2$
- b) (15)³
- c) $(15)^4$
- d) (15)⁵

- 100. If $y = e^x + \sin x$ then $\frac{d^2x}{dv^2}$ is equal to
- b) $-(e^x \cos x)^{-2}$ c) $-(e^x \sin x)(e^x + \cos x)^{-2}$
- d) $(\sin x e^x)(\cos x + e^x)^{-3}$
- If w is an imaginary cube root of unity, then $(1+w-w^2)^7$ equals 101.
 - a) 128 w
- b) -128w
- c) $128w^2$
- d) -128w²

- 102. $tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{2}{9}\right) =$

- $tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{2}{9}\right) =$ a) $\frac{1}{2}cos^{-1}\left(\frac{3}{5}\right)$ b) $\frac{1}{2}sin^{-1}\left(\frac{3}{5}\right)$ c) $\frac{1}{2}tan^{-1}\left(\frac{3}{4}\right)$ d) $tan^{-1}\left(\frac{1}{2}\right)$ If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k equals
 a) $\frac{3}{2}$ b) $\frac{9}{2}$ c) $\frac{-2}{9}$ d) $\frac{-3}{2}$ 103.

- If z_1, z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| +$ 104.

- 104. If z_1, z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $arg(z_1) arg(z_2)$ is equal to

 a) $-\frac{\pi}{2}$ b) 0 c) $-\pi$ d) $\frac{\pi}{2}$ 105. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ $\vec{b} = \hat{\imath} \hat{\jmath} + \hat{k}$, $\vec{c} = \hat{\imath} + 2\hat{\jmath} \hat{k}$ then $\begin{vmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{b} & \vec{b}.\vec{c} \\ \vec{c}.\vec{a} & \vec{c}.\vec{b} & \vec{c}.\vec{c} \end{vmatrix} = a$ a) 2 b) 4 c) 16 d) 64

Part 4 – Biology

71.	Which of the following cells is haploid?		
	a) Ovum	b) embryo	
	c) red blood cell	d) skin cell	
72.	What cell organelle is responsible for the p	roduction of ATP?	
	a) Chloroplast b) Nuc	cleus	
	c) Vesicle	d) Mitochondrion	
		601	
73.	Sorting of protein to mitochondria and chlo		
	a) cotranslational	b) post-translational	
	c) pretranslational	d) quasitranslational	
74.	Ribosomes have	Ø'	
	a) 1 subunit	b) 2 subunits	
	c) 3 subunits	d) 4 subunits	
75.	Plants differ from animals in that plants have		
		entral vacuole	
	c) Golgi complex	d) Mitochondria	
76.	Passage through pores in the nuclear envel	one is restricted primarily to	
,	a) proteins, RNA, and protein-RNA complex		
	b) lipids and glycolipids		
	c) DNA and RNA		
	d) RNA and protein-carbohydrate complexe	es	
77.	The rough ER is so named because it has ar	abundance of on	
	it		
	a) mitochondria	b) lysosomes	

	c) Golgi bodies	d) Ribosomes
78.	Within chloroplasts, light is captured	by
	a) grana within cisternae	b) thylakoids within grana
	c) cisternae within grana	d) grana within thylakoids
79.	The smooth ER is especially abundan	t in cells that synthesize extensive
	amounts of	
	a) Toxins	b) proteins
	c) lipids	d) nucleic acids
80.	The cytoplasm of a bacterium	G
	a) is supported by the cytoskeleton	b) is supported by microtubules
	c) is supported by keratin	d) has no internal support structure
81.	Which of these is not a living fossil?	
	a) Archaeopteryx	b) Duck-billed platypus
	c) Lungfish	d) Frog
82.	Name the scientist who cut off the ta	ails of mice of successive generations to
	prove Lamarck's theory was wrong	·
	a) Weismann	b) Haeckel
	c) Darwin	d) Wallace
83.	Speciation is the evolutionary proces	s by which
	a) a new gene pool is formed	
	b) evolutionary paths of species conv	verge
	c) hybrids species form	
	d) Shows up differences in physical t	raits
84.	Non geographic speciation can be fo	und in
	a) parapatric speciation	b) peripatric speciation

	c) allopatric speciation	d) sympatric speciation							
85.	Evidences of evolutionary relationships is found in								
	a) atmosphere	b) fossils							
	c) ocean beds	d) rocks							
86.	_	gy sources but necessary for enzymatic							
	reactions, for protein complexes, or as precursors for biomolecules?								
	a) minerals and vitamins	b) carbohydrates							
	c) lipids	d) proteins							
07	Which are of the faller in a land	a series a sid?							
87.	Which one of the following is not an amino acid?								
	a) aspartic acid	b) glutamine							
	c) palmitic acid	d) leucine							
00	Objects to a secondate on the con-								
88.	Obesity is a condition where								
	a) energy intake exceeds energy output over time								
	b) energy intake is lower than energy output over time								
	c) energy input is unaltered								
	d) energy output is unaltered.								
89.	The long bones of the body are								
03.	a) humerus and femur	b) patella							
	c) scapula.	d) ribs							
	c) scapaia.	4,1183							
90.	The proteins that are responsible for contracting the muscles are								
	a) actin and troponin	b) actin and myosin							
	c) myosin and tropomyosin	d) actin and tropomyosin							
01	Thursday on the process and different	iata ia							
91.	T lymphocytes mature and different								
	a) thymus	b) bone marrow							
	c) spleen	d) lymph node							

92.	B lymphocytes mature and differentiate in							
	a) thymus	b) bone marrow						
	c) spleen	d) lymph node						
93.	Antibodies are produced by							
	a) plasma cells of the humoral immune syst	rem						
	b) T lymphocyte							
	c) Dendritic cells							
	d) Macrophages							
		C						
94.	Antigens are processed by the	·. ••						
	a) Macrophages							
	b) Dendritic cell							
	c) macrophages, dendritic cells and B cells	(2)						
	d) Neutrophils	S-						
		,						
95.	Primary lymphoid organ is							
	a) Spleen							
	b) thymus							
	c) lymph node							
	d) gut-associated lymphoid tissue							
96.	What was the first bacterium shown to cause human disease?							
	a) Anthrx	b) Mycobacterium						
	c) Diphteria	d) Streptococus						
97.	Living, unstained cells and organisms can be observed best using							
	a) Fluorescent microscope	b) TEM						
	c) Phase contrast Microscope d) SEN	1						

98.	Which of the following statements is mos	t correct about the differential					
	Gram stain?						
	a) Crystal violet differentially stains Gram positive cells						
	b) Acetone differentially destains Gram negative cells						
	c) Gram's iodine differentially stains Gram	positive cells					
	d) Safranin differentially stains Gram nega	ative cells					
99.	Which of the following is NOT equivalent	to 10 micrometers?					
	a) 0.0001cm	b) 0.01mm					
	c) 10,000nm	d) 100,000 Angstoms					
		G					
100.	Plasmids are important to the genetics of	many bacteria. This is because					
	a) they are inherited from one generation to the next						
	b) they may carry genes that give their host a selective advantage						
	c) they can render bacteria drug-resistant	0					
	d) All of the above	0					
101.	The 70S procaryotic ribosomes consist of						
	a) two 40S subunits	b) a 50S and a 30S subunit					
	c) a 40S and a 30S subunit	d) a 50S and a 20S subunit.					
	6						
102.	Passage through pores in the nuclear env	elope is restricted primarily to					
	a) proteins, RNA, and protein-RNA comple	exes					
	b) lipids and glycolipids						
	c) DNA and RNA						
	d) RNA and protein-carbohydrate comple	xes					
103.	The rough ER is so named because it has a	an abundance of on it					
	a) mitochondria	b) lysosomes					
	c) Golgi bodies d) ril	oosomes					

104.	Within chloroplasts, light is captured by							
	a) grana within cisternae	b) thylakoids within grana						
	c) cisternae within grana	d) grana within thylakoids						
105.	The smooth ER is especially abundant in cells that synthesize extensive							
	amounts of							
	a) Toxins	b) proteins						
	c) lipids	d) nucleic acids						
106.	The cytoplasm of a bacterium	G						
	a) is supported by the cytoskeleton b)	is supported by microtubules						
	c) is supported by keratin	d) has no internal support structure						
107.	The most important form of water to plants is							
	a) Hygroscopic water	b) Capillary water						
	c) Combined water	d) Gravitational water						
	\mathcal{O}							
108.	Which among the following is not a pas	ssive factor for affecting soil						
	formation?							
	a) Rainfall	b) Time						
	c) Topography	d) Parent material						
109.	What causes 'A' horizon to become a dark coloured?							
	a) Melanization	b) Chelation						
	c) Gleization d)	Laterization						
110.	Soil texture is determined by							
	a) The relative proportion of mineral particles of different size							
	b) The varying degree of weathering of parental rock							
	c) The soil organisms							

	d) None of these							
111.	Who for the first time coined the term succession for the closely changes in							
	communites?							
	a) Clements	b) Hult						
	c) Cowles	d) Tansely						
112.	Which of the following is not a component of plant species of a hydrosere?							
	a) Rooted submerged stage	b) Herb stage						
	c) Rooted floating stage	d) Red-swamp stage						
113.	"Trangene" was coined by	G						
	a) Gordon and Ruddle	b) Watson and crick						
	c) Mendal and Darwin	d) Mary and Rosellin						
114.	Which of the following is not a nat	Which of the following is not a natural medium?						
	a) Amniotic fluid	b) Ascitic and plural fluids						
	c) Coconut milk	d) Phosphate buffer saline						
		9						
115.	What is the voltage range used in	electroporation?						
	a) 20-30	b) 200-300						
	c) 2000-3000	d) 20000-30000						
	1.							
116.	Which of the following is not a iso	enzyme?						
	a) G6PDH	b) LDH						
	c) NP	d) ATPase						
117.	Restriction endonucleases hydroly	zes polynucleotide from						
	a) Only the 5' end							
	b) From either terminal							
	c) At an internal phosphodiester b	ond						
	d) A phosphodiester bond within a	a specific sequence						

- 118. Bacteria protect themselves from viruses by fragmenting viral DNA upon entry with
 - a) Methylase

b) Endonucleases

c) Ligases

- d) Exonucleases
- 119. Restriction endonucleases are
 - a) Used for in vitro DNA synthesis
 - b) Synthesized by bacteria as part of their defense mechanism
 - c) Present in mammalian cells for degradation of DNA when the cell dies
 - d) Used in genetic engineering for ligating two DNA molecules
- 120. Which of the following processes require energy?
 - a) Ligation

b) Transformation

c) Restriction digestion

d) Hybridization

Answer												
1	a	Physics	36	d Chemistry	71	С	Math	71	a	Biology		
2	а		37	С	72	b		72	d		106	d
3	d		38	a	73	d		73	b		107	b
4	С		39	b	74	С		74	b		108	a
5	b		40	С	75	d		75	b		109	а
6	b	B	41	С	76	а		76	a		110	а
7	С	19	42	b	77	С		77	d		111	b
8	С		43	а	78	а		78	b		112	b
9	d		44	b	79	b		79	С		113	а
10	b		45	b	80	С		80	d		114	d
11	b		46	С	81	d		81	а		115	С
12	a		47	d	82	d		82	a		116	d
13	b		48	a	83	d		83	а		117	d

14	С	49	d	84	С	84	а	118	b
15	b	50		85		85		119	
			b		С		b		b
16	d	51	d	86	a	86	a	120	a
17	d	52	d	87	а	87	С		
18	а	53	b	88	С	88	а		
19	d	54	b	89	а	89	a		
20	b	55	С	90	b	90	b		
21	d	56	С	91	d	91	a		
22	b	57	С	92	b	92	b		
23	а	58	С	93	С	93	а		
24	b	59	b	94	а	94	c		
25	b	60	а	95	d	95	b		
26	b	61	С	96	b	96	a		
27	С	62	b	97	b	97	С		
28	С	63	b	98	С	98	b		
29	С	64	a	99	d	99	а		
30	а	65	b	100	d	100	d		
31	С	66	С	101	d	101	b		
32	d	67	С	102	d	102	a		
33	а	68	С	103	b	103	d		
34	а	69	а	104	b	104	b		
35	b	70	С	105	С	105	С		