MATHEMATICAL SCIENCES

Paper - III

SECTION - I

Note : i) Answer both the questions.

ii) Each question carries twenty marks. $2 \times 20 = 40$

1.

(a) Discuss the cubic spline interpolation by using Hermite cubic interpolant and apply it to find $\cos(3.14159)$ for free boundary conditions by using the following data :

<i>x</i> :	0	1	3	3.5	5
cos x :	1	0.54030	- 0.98999	- 0.93646	0.28366

(b) Deduce the minimizing property of cubic splines.

OR

Show that a set $M \subset C$ [a, b] is compact in C [a, b] if and only if the aggregate of functions $x(t) \in M$ are uniformly bounded and equi-continuous.

OR

Derive the steady-state equation of the multiserver Merkovian model (M/M/C) and obtain its solution.

2. A homogeneous solid sphere of radius *R* has the initial temperature distribution

f(r), $0 \le r \le R$, where r is the distance measured from the centre. The surface temperature is maintained at 0°. Show that the temperature T(r, t) in the sphere is the solution of

$$T_t = c^2 \left(T_{rr} + \frac{2}{r} T_r \right)$$

where c^2 is a constant. Show that the temperature in the sphere for t > 0 is given by

$$T(r, t) = \frac{1}{r} \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi}{R}r\right) exp\left(-\lambda_n^2 t\right), \lambda_n = \frac{c n\pi}{R}.$$

OR

A rigid body is set rotating under no forces (moment of finite forces about the principal axes being zero) about its one point with angular velocity components $\omega_j = n$, $\omega_2 = 0$, $\omega_3 = n\sqrt{2}$ about the principal axes, respectively. If the respective principal moments are 4A, 3A and A, respectively then discuss the ultimate motion.

OR

What is sampling distribution ? Derive non-central *t*-distribution.

SECTION - II

Note : i) Answer all questions.

- ii) Each question carries fifteen marks. $3 \times 15 = 45$
- 3. (a) Suppose the function f(z) is analytic everywhere in a closed domain *D*, except at a finite number of isolated singularities z_k (k = 1, 2, ..., n) lying inside the domain *D*. Then show that

$$\int_{\Gamma^{+}} f(\rho) d\rho = 2 \pi i \sum_{k=1}^{n} Res [f(z), z_{k}]$$

where Γ^+ is the complete boundary of domain *D* traversed in the positive direction and hence evaluate the integral

$$I = \int_{0}^{2\pi} \frac{\mathrm{d}\theta}{1 + a\cos\theta} \, , \ | \ a | < 1.$$

(b) Construct a function that maps the strip $0 < Re \ z < a$ conformally onto the upper half-plane $Im \ \omega > 0$.

OR

Find the Hamilton's canonical equations of motion of a particle of mass *m* moving in a force field of potential $V(\rho, \phi, z)$ in cylindrical polar co-ordinates (ρ, ϕ, z) .

OR

Show that every Bernoulli sequence of *r.v.s.* obeys the weak law of large numbers.

4. Prove that the family *M* of Lebesgue measurable sets is an algebra.

OR

Give two examples of non-parametric tests. Discuss the exact and the limiting null distributions of the corresponding test statistics.

OR

Find the rate of convergence of Newton-Raphson method to find the root of an equation f(x) = 0.

1510-III

5. Show that the integral equation

$$y(x) = \int_{0}^{x} (x+t) y(t) dt + 1$$

is equivalent to the differential equation

$$y''(x) - 2xy'(x) - 3y(x) = 0$$

 $y(0) = 1, y'(0) = 0.$

OR

Suppose X_1 , X_2 , ..., X_n is a random sample from Poisson distribution with parameter θ . The natural conjugate prior for θ is Gamma (α , β). Then obtain the posterior density of θ .

OR

Using Ritz method based on the variational principle, show that the approximate solution of the boundary value problem

y'' + y = x, y(0) = y(1) = 0is $y = \frac{5}{18} (-x + x^2).$

SECTION – III

Note : i) Answer all questions.

- ii) Each question carries ten marks. $9 \times 10 = 90$
- 6. Show that a finite integral domain is a field.
- 7. In a plane triangle, find the maximum value of cos *A* cos *B* cos *C*.
- 8. Find the shortest distance between the parabola $y = x^2$ and the straight line x y = 5, using calculus of variation.
- 9. Define conformal mapping. What are essential conditions for conformal transformation ? Examine that following transformations are everywhere conformal or not and determine critical points :
 - (i) $f(z) = (z-1)^2$
 - (ii) $f(z) = \frac{z-i}{z+i}$.
- 10. Use Cayley-Hamilton theorem to find A^{-1} , where

$$A = \begin{pmatrix} 2 & 1 \\ & \\ 3 & 5 \end{pmatrix}.$$

11. Find the eigenvalue and eigenfunctions of the following homogeneous integral equation with degenerate kernels

$$y(x) = \lambda \int_{0}^{1} (2xt - 4x^{2}) y(t) dt.$$

- 12. Explain the principle of likelihood ratio test.
- 13. Define a BIBD and state the situations in which such designs are used.
- 14. Give the circumstances under which systematic sampling is to be preferred to simple random sampling.

41

SECTION - IV

Note : i) Answer all questions.

- ii) Each question carries five marks. $5 \times 5 = 25$
- 15. If the vectors (0, 1, *a*), (1, *a*, 1), (*a*, 1, 0) of the vector space R^3 (*R*) be linearly dependent, then find the value of *a*.
- 16. If the function $f(z) = \frac{iz}{2}$ is defined on the open disk |z| < 1, show that

 $\lim_{z \to 1} f(z) = \frac{i}{2}$, the point z = 1 being on the boundary of definition.

17. Find the general solution of

$$(x^{2} + 1) \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = 6(x^{2} + 1)^{2}$$

given that y = x and $y = x^2 - 1$ are linearly independent solutions of corresponding homogeneous equation.

- 18. Find the curve for which the surface of revolution is minimum.
- 19. There are two identical urns containing respectively 4 white, 3 red balls and 3 white, 7 red balls. An urn is chosen at random and a ball is drawn from it. Find the probability that the ball is white. If the ball drawn is white, what is the probability that it is from the first urn ?