ELEMENTRY MATHEMATICS

- 1. What is the geometric means of the observations 125, 729, 1331?
 - (a) 495 (b) 1485
 - (c) 2221 (d) None of these
- 2. Examples of data are given below:
 - I. Information on households collected by an investigator by door-to-door visits.
 - II. Data on the percentage of literates, sexwise, for the different districts of a state collected from records of the census of India.
 - III. General Information about families. collected by telephonic interviews.

Which one of the following in respect of the above is correct?

- (a) I and II are primary data
- (b) I and III are primary data
- (c) II and III are primary data
- (d) I, II and III are primary data
- 3. Which one of the following can be obtained from a historgam?
 - (a) Mean (b) Median

(c) Mode (d) None of these

- 4. The median of three positive integers, no two of which are equal, is 5. What is the least possible value of arithmetic means of these integers? (b) 3
 - (a) 2
 - (c) 4
- (d) No such least possible value exists 5. Consider the following pairs of numbers:
- I. (8, 12) II. (9, 11) III. (6, 24) Which pairs of number have the same harmonic means? (a) I and II (b) II and III
 - (c) I and III (d) I, II and IIII
- 6. If $27 \times (81)^{2n+3} 3^m = 0$, then what is *m* equal
 - to? (b) 5n + 6(a) 2n + 5
 - (d) 8n + 15(c) 8n + 3
- 7. There are four numbers forming a GP in which the third term is greater than the first

by 9 and the second term is greater than the fourth by 18. What is the first term? (a) 2 (b) 3

- (c) -2(d) – 3
- 8. What is the value of $[\log_{13}(10)]/[\log_{169}(10)]?$ (a) 1/2(b) 2 (c) 1 (d) $\log_{10} 13$
- 9. A boy travels a distance of 8 km at the rate
- of 4 km/h, 6 km at the rate of 3 km/h and 4 km at the rate of 2 km/h. What is the average speed for the entire journey? (a) 2 km/h(b) 3 km/h
- (c) 4 km/h(d) 6 km/h
- 10. Which one of the following is not correct in respect of the sets A and B? (a) If $A \subset B$, then $B \cup A = B$

 - (b) If $A \subset B$, then $B \cap (A B) \phi$
 - (c) If $A \subseteq B$, then $B \cap A = A$
 - (d) If $A \cap B = \phi$ then neither $A = \phi$ or $B = \phi$
- 11. If $0 < \theta < \phi < 90^\circ$, then which one of the following is correct?
 - (a) $(\sin \theta + \cos \theta)^2 > 2$
 - (b) $(\sin^2 \theta + \cos^2 \phi) \le 2$
 - (c) $(\sin^2 \theta + \cos^2 \phi) < 2$
 - (d) $(\sin^2 \theta + \cos^2 \phi) > 2$
- 12. For what value of θ is $(\sin \theta + \csc \theta) = 2.5$ where $0 < \theta < 90^\circ$?
 - (a) 30° (b) 45°
 - (c) 60° (d) 90°
- 13. The angles of a triangle are in AP and the greatest angle is double the least. What is the ratio of angles in the Indian measure? (a) 2:3:4(b) 1:2:3

$$) 3:3:6 (d) 4:5:$$

14. The length of the shadow of a person s cm tall when the angle of elevation of the sun is α is p cm. It is q cm when the angle of elevation of the sun is β . Which one of the following is correct when $\beta = 3\alpha$?

(a)
$$p - q = s \left(\frac{\tan \alpha - \tan 3\alpha}{\tan 3\alpha \tan \alpha} \right)$$

(c

- (b) $p q = s\left(\frac{\tan 3\alpha \tan \alpha}{3\tan 3\alpha \tan \alpha}\right)$ (c) $p - q = s\left(\frac{\tan 3\alpha - \tan \alpha}{\tan 3\alpha \tan \alpha}\right)$ (d) $p - q = s\left(\frac{\tan 2\alpha}{\tan 3\alpha \tan \alpha}\right)$
- 15. If $\cot \theta = \frac{2xy}{x^2 y^2}$, then what is $\cos \theta$ equal

to?

(a)
$$\frac{x^2 - y^2}{x^2 + y^2}$$
 (b) $\frac{x^2 + y^2}{x^2 - y^2}$
(c) $\frac{2xy}{x^2 + y^2}$ (d) $\frac{2xy}{\sqrt{x^2 + y^2}}$

16. The value of $\csc^2 \theta - 2 + \sin^2 \theta$ is always (a) less than zero (b) non-negative (c) zero (d) 1

17. If
$$\tan \theta = \frac{p}{q}$$
, then what is

 $\frac{p\sec\theta - q\cos ec\theta}{p\sec\theta + q\cos ec\theta}$ equal to?

(a)
$$\frac{p-q}{p+q}$$
 (b) $\frac{q^2-p^2}{q^2+p^2}$

(c)
$$\frac{1}{q^2 + p^2}$$
 (d) 1
18. What is the value of

 $\sin^3 60^\circ \cot 30^\circ - 2 \sec^2 45^\circ + 3 \cos 60^\circ \tan 45^\circ - \tan 2 60^\circ$? (a) 35/8 (b) -35/8

$$(c) -11/8$$
 $(d) 11/8$

- 19. If 0 < x < 45° and 45° < y < 90°, then which one of the following is correct?
 (c) cin y = cin y
 (c) cin y = cin y
 - (a) $\sin x = \sin y$ (b) $\sin x < \sin y$ (c) $\sin x > x \sin y$ (d) $\sin x \le \sin y$
 - $(1) \sin x > \sin y \qquad (1) \sin x \le \sin y$

20. The difference of the two angles in degree measure is 1 and their sum in circular measure is also I. What are the angles in circular measure?

(a)
$$\left(\frac{1}{2} - \frac{\pi}{360}\right), \left(\frac{1}{2} + \frac{\pi}{360}\right)$$

(b) $\left(\frac{1}{2} - \frac{90}{\pi}\right), \left(\frac{1}{2} + \frac{90}{\pi}\right)$

(c)
$$\left(\frac{1}{2} - \frac{\pi}{180}\right), \left(\frac{1}{2} + \frac{\pi}{180}\right)$$

(d) None of the above

- 21. $\frac{\cos\theta}{1-\sin\theta} \frac{\cos\theta}{1+\sin\theta} = 2$ is satisfied by which one of the following values of θ ? (a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $\pi/6$
- 22. Consider the following

I.
$$\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} = \cos^2 \theta (1 + \tan \theta)$$
$$(1 - \tan \theta)$$

II.
$$\frac{1+\sin\theta}{1-\sin\theta} = (\tan\theta+\sec\theta)^2$$

Which of the statements given above is/are correct?

- (a) I only (b) II only
- (c) Both I and II (d) Neither I nor II
- 23. What is the angle subtended at the centre of a circle of radius 8 m after traversing 4π m along its circumference? (a) $\pi/3$ (b) $\pi/2$

(c)
$$2\pi/3$$
 (d) $3\pi/4$

24. If $\cot \theta = 8/15$, then what is the value of $\sqrt{1-\cos \theta}$

$$\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$
 where θ is a positive acute angle?
(a) $1/5$ (b) $2/5$

(a)	1/3	(D)	2/3
(c)	3/5	(d)	4/5

25. In the figure given above, *O* is the centre of the circle $\angle AOD = 106^\circ$. What is $\angle BCD$ equal to? (a) 53° (b) 43° (c) 40° (d) 37°

- 26. The quadrilateral formed by joining the mid-points of the sides *AB*, *BC*, *CD*, *DA* of a quadrilateral *ABCD* is
 - (a) a trapezium but not a parallelogram
 - (b) a quadrilateral but not a trapezium
 - (c) a parallelogram only
 - (d) a rhombus

In the figure given above, *ABCD* is a square in which AO = AX. What is $\angle XOB$? (a) 22.5° (b) 25° (c) 30° (d) 45°

In the figure *AB* is parallel to *CD* and *BE* is parallel to *FH*. What is \angle *FHE* equal to? (a) 110° (b) 120°

29. In the figure given above, $\angle AOB = 46^{\circ}$; *AC* and *OB* intersect each other at right angles. What is the measure of $\angle OBC$? (*O* is the centre of the circle)

In the figure given above, O is the centre of the circle. The line UTV is a tangent to the circle at T, \angle VTR = 52° and triangle PTR is an isosceles traingle such that TP = TR. What is $\angle x + \angle y + \angle s$ equal to?

(a)	175°	(b)	208°
(c)	218°	(d)	250°

31. What is the number of points in the plane of a triangle *ABC* which are at equal distance from the vertices of the triangle?

(a) 0 (b) 1 (c)
$$a$$

(c) 2 (d)
$$3$$

32. The bisectors of the angles ABC and BCA of a triangle ABC meet in a point O. What is the angle at O facing the side BC?
(a) 90° - (A/2)
(b) 90° + (A/2)

(a)
$$90^2 - (A/2)$$
 (b) $90^2 + (A/2)$

(c)
$$90^{\circ} - A$$
 (d) $90^{\circ} + A$

- 33. *ABC* is a triangle in which AB = AC. Let *BC* be produced to *D*. From a piont *E* on the line *AC* let *EF* be a straight line such that *EF* is parallel to *AB*. Consider the quadrilateral *ECDF* thus formed. If $\angle ABC = 65^{\circ}$ and $\angle EFD = 80^{\circ}$, then what is $\angle FDC$ equal to (a) 43° (b) 41°
 - (c) 37° (d) 35°

34. *ABC* is a triangle and the perpendicular drawn from *A* meets *BC* in *D*. If $AD^2 = BD.DC$, then which one of the

following is correct?

- (a) *ABC* must be an obtuse angled triangle
- (b) *ABC* must be an acute angled triangle
- (c) Either $\angle B \ge 45^\circ$ or $\angle C \ge 45^\circ$
- (d) $AC^2 = AB^2 + BC^2$
- 35. Consider the following statements:
 - I. Congruent triangles are similar.
 - II. Similar trianlges are congruent.
 - III. If the hypotenuse and a side of one right triangle are equal to the hypotenuse and a side of another right triangle respectively, then the two right triangles are congruent.
 - Which of the statement given above is/are correct?
 - (a) I only (b) II only
 - (c) II and III (d) I and III
- 36. *ABC* is triangle. *X* is a piont outside the triangle *ABC* such that CD = CX, where *D* is the point of intersection of *BC* and *AX*; and $\angle BAX = \angle XAC$. Which one of the following is correct?
 - (a) Triangles ABD, ACX are similar
 - (b) $\angle AB\bar{D} < \angle ACD$
 - (c) AC = CX
 - (d) $\angle ADB > \angle DXC$
- 37. *A* point *P* moves such that its distance from two given points *A* and *B* are equal. Then what is the focus of the point *P*?

(a) A straight line which is the high right bisector of AB

- (b) A circle with centre at *A*
- (c) A circle with centre of *B*

(d) A straight line passing through either A or B

In the figure given above, *PT* is a tangent to a circle of radius 6 cm. If *P* is at a distance of 10 cm from the centre *O* and *PB* = 5 cm, then what is the length of the chord *BC*?

- (a) 7.8 cm (b) 8.0 cm (c) 8.4 cm (d) 9.0 cm
- 39. A solid cone of height 8 cm and base radius6 cm is melted and recast into identical cones, each of height 2 cm and radius 1 cm. What is the number of cones formed?
 - (a) 36 (b) 72 (c) 144 (d) 180
- 40. In the triangle ABC, AB = 2 cm, BC = 3cm,
- and AC = 4 cm, *D* is the middle point of *AC*. If a square is constructed on the side *BD*, what is the area of the square? (a) 4.5 cm² (b) 2.5 cm²
 - (c) 6.35 cm^2 (d) None of these
- 41. From a cylindrical log whose height is equal to its diameter, the greatest possible sphere has been taken out. What is the fraction of the original log which is cut away?(a) 1/2 (b) 1/3
 - (c) 1/4 (d) 2/3
- 42. If a sphere of radius 10 cm is intersected by a plane at a distance 8 cm from its centre, what is the radius of the curve of intersection of the plane of the plane and the sphere?
 - (a) 8 cm (b) 6 cm
 - (c) 5 cm (d) 4 cm
- 43. A cylindrical can of internal diameter 24 cm contains was. A solid sphere of radius 6 cm is completely immersed to water in the cylinder. The water level increases by
 - (a) 0.25 cm (b) 0.5 cm
- (c) 2 cm
 (d) 3 cm
 44. A person rides a bicycle round a circular path of radius SC. The radius of the wheel of the bicycle is 50 cm. The cycle comes to the starting point for the first time in 1 h. What the number of revolutions of the
 - wheel in 15 min? (a) 20 (b) 25
 - (c) 30 (d) 35

- 45. *ABC* is a straight right-angled at *C*. If *p* is the length of perpendicular from *C* to *AB* and *a*, *b*, *c* are the sides, the which one of the following is correct?
 - (a) pa = bc (b) pb = ca
 - (c) pc = ab (d) $p^2 = ab$
- 46. A bucket which is in the form of a frustum of a corner radii 3 and 5 unit and vertical height 6 unit. How may water can the bucket hold?
 - (a) 33π cu unit (b) 45π cu unit
 - (c) 48π cu unit (d) None of these
- 47. How many litres of water (approximately) hemispherical container of radius 21 cm hold?
 - (a) 19.4 L (b) 38.8 L (c) 194 L (d) 388 L
- 48.

PQRS is a diameter of a circle of radius 6 cm as shown in the figure above. The lengths *PQ*, *QR* and *RS* are equal. Semicircles are drawn on *PQ* and *QS* as diameters. What is the perimeter of the shaded region?

- (a) 12π cm (b) 14π cm
- (c) 16π cm (d) 18π cm
- 49. If the radius of the base and the height of a right circular cone are increased by 20% then what is the approximate percentage increase in volume?

Seven semi-circular areas are removed from the rectangle *ABCD* as shown in the figure above. In which AB = 2 cm and AD = 0.5cm. The radius of each semi-circle *r*, *s*, *t*, *u*, *v* is half of that of semi-circle p or q. What is the area of the remaining portion?

- (a) $(128 13 \pi)/128 \text{ cm}^2$
- (b) $(125 13\pi)/125 \text{ cm}^2$
- (c) $(128 15\pi)/128$ cm²
- (d) None of these
- 51. A wire is in the form of a circle of radius 42 cm. If it is bent into a square, then what is the side of the square?
 - (a) 66 cm (b) 42 cm
 - (c) 36 cm (d) 33 cm
- 52. How many litres of water flow out of a pipe having an area of cross-section of 5 cm² in one minute. If the speed of water in the pipe is 30 cm/s?
 - (a) 90 L (b) 15 L
 - (c) 9 L (d) 1.5 L
- 53. A right triangle *ABC* with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm. What is the volume of the solid so obtained? (a) 50π cm³ (b) 100π cm³
 - (c) $125\pi \,\mathrm{cm}^3$ (d) $150\pi \,\mathrm{cm}^3$
- 54. The ratio of volumes of two cones is 4:5 and the ratio of the radii of their bases is 2:3. What is the ratio of their vertical heights?
 - (a) 5:6 (b) 6:5
 - (c) 9:5 (d) 5:9
- 55. The paint in certain container is sufficient to paint an area equal to 5.875 m^2 . How many bricks of dimensions $12.5 \text{ cm} \times 10 \times$ 7.5 cm can be painted out of this container? (a) 225 (b) 180 (c) 150 (d) 100
- 56. If *p* is an integer then every square integer is of the form
 - (a) 2p or (4p-1) (b) 4p or (4p-1)
 - (c) 3p or (3p+1) (d) 4p or (4p+1)
- 57. What least value must be given to \oplus so that the number 84705 \oplus 2 is divisible by 9? (a) 0 (b) 1 (c) 2 (d) 3
 - 0 (b) 1 (c) 2 (d)

58. If $x = (a + \sqrt{a^2 + b^2})^{\frac{1}{3}} + (a - \sqrt{a^2 + b^3})^{\frac{1}{3}}$ then what is the value of $x^3 + 3bx - 2a$? (b) $-2a^{3}$ (a) $2a^{3}$ (c) 1 (d) 0 59. If the roots of the equation $\frac{x(x-1)-(m+1)}{(x-1)(m-1)} = \frac{x}{m}$ are equal, then what is the value of *m*? (a) 1 (b) 1/2 (d) -1/2(c) 0 60. What is $\frac{(x-y)^3 + (y-z)^3 + (z-x)^3}{4(x-y)(y-z)(z-x)}$ equal to? (a) -3/4(b) 1/4 (d) 0 (c) 3/461. For two natural numbers m and n, let g_{mn} denote the greatest common factor of m and

n. Consider the following in respect of three natural numbers k, m and n.

I.
$$g_{m(nk)} = g_{(mn)}$$

- II. $g_{mn}g_{nk} = g_{mk}$ Which of the above is/are correct?
- (a) I only (b) II only
- (c) Both I and II (d) Neither I nor II
- 62. What is the value of *k* for which the system of equations x + 2y - 3 = 0 and 5x + ky + 7 =0 has no solution? (a) -3/14(b) -14/3

(c)
$$1/10$$
 (d) 10

63. If x + y + z = 0 then what is the value of

$$\frac{1}{x^{2} + y^{2} - z^{2}} + \frac{1}{y^{2} + z^{2} - z^{2}} + \frac{1}{z^{2} + x^{2} - y^{2}}?$$
(a) $\frac{1}{x^{2} + y^{2} + z^{2}}$ (b) 1
(c) -1 (d) 0

64. The length of a line segement AB is 2 unit. It is divided into two parts at the point C such that $AC^2 = AB \times CB$. What is the length of CB?

(a)
$$3+\sqrt{5}$$
 unit
(b) $3-\sqrt{5}$ unit
(c) $2-\sqrt{5}$ unit
(d) $\sqrt{3}$ unit
65. If $pq + qr + rp = 0$, then what is the value of
 $\frac{p^2}{p^2 - qr} + \frac{q^2}{q^2 - rp} + \frac{r^2}{r^2 - pq}$?
(a) 0
(b) 1
(c) -1
(d) 3
66. If $a = \frac{1+x}{2-x}$, the what is $\frac{1}{a+1} + \frac{2a+1}{a^2-1}$ equal

(a)
$$\frac{(1+x)(2+x)}{2x-1}$$

(b)
$$\frac{(1-x)(2-x)}{x-2}$$

(c)
$$\frac{(1+x)(2-x)}{2x-1}$$

(d)
$$\frac{(1-x)(2-x)}{2x+1}$$

Atributes	To	wn A	Tov	Town B		
	Male	Female	Male	Female		
Coffee drinkers40%		5%	25%	15%		
Non-coffee	20%	35%	30%	30%		
drinkers						

If the total population of the Twons A and B are 10000 and 20000 respectively, then what is the total number of female coffee drinkers in both towns?

(a)	8000	(b)	6000
(c)	3500	(d)	2500

68. If $(37)^x = (0.037)^y = 10000$, then what is the

value of
$$\frac{1}{x} - \frac{1}{y}$$
?
(a) 1 (b) 2
(c) 1/2 (d) 1/4

- 69. If ax = by = cz and abc = 1, then what is xy + yz+ zx equal
 - (a) xyz (b) x + y + z
 - (d) 1 (c) 0
- 70. When a polynomial is divided by alinear polynomial, then what is the remainder?
 - (a) Constant polynomial only
 - (b) Zero polynomial only
 - (c) Either constant o zero polynomial
 - (d) Liner polynomial
- 71. What is the ratio of sum of squares of roots to the product of the roots of the equation $7x^2 + 12x + 18 = 0?$
 - (b) -6:7 (a) 6:1
 - (c) -6:1(d) -1:6
- 72. If $x = 2 + \sqrt{3}$, then what is $(x^2 + x^2)$ equal to?
 - (a) 12 (b) 13
 - (c) 14 (d) 15
- 73. Which one of the following statements is correct?
 - (a) Remainder theorem is a special case of factor theorem.
 - (b) Factor theorem is a special case of Remainder theorem.
 - (c) Factor theorem and Remainder theorem are two indepdent results
 - (d) None of the above
- 74. When $x^{40} + 2$ is divided by $x^4 + 1$, what is the remainder?
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 75. If the HCF of $x^3 27$ and $x^3 + 4x^2 + 12x + k$ is quadratic polynomial, then what is the value of k? (b) 9
 - (a) 27
 - (d) 3 (c) 3
- 76. A number consists of two digits, whose sum is 10. If 18 is subtracted from the number, digits of the number are reversed. What is the product?
 - (a) 15 (b) 18
 - (c) 24 (d) 32

- 77. What is the LCM of 3 $(a^3 b^3)$ and 11 $(a^4 - b^4)$?
 - (a) $33(a^3 b^3)(a^2 + b^2)(a + b)$
 - (b) $(a^3 b^3) (a^2 + b^2) (a b)$
 - (c) 33 (a b) $(a^2 + b^2 ab)$ $(a^3 b^3)$
 - (d) 33 $(a^3 b^3) (a^4 b^4)$
- 78. Students of a class are made to stand in rows. If one student is extra in a row, there would be two rows less. If one student is less is n a row, there would be three rows more. What is is the number of students in the class?

(b) 55

- (a) 65
- (d) 50 (c) 60
- 79. A railway ticket for a child costs half the full fare but the reservation charge is the same on half ticket as much as on full ticket. One reserved first class ticket for a jouney between two stations is Rs. 362; one full and one half reserved first class tickets cost Rs. 554. What is reservations charge?

(a)	Rs. 18	(b)	Rs. 22
(c)	Rs. 38	(d)	Rs. 46

- 80. Out of a group of swans 7/2 times the square root of the number are swimming in the pool while the two remaining are playing outside the pool. What is the total number of swans?
 - (a) 4 (b) 8
 - (c) 12 (d) 16
- 81. If the ratio of *x* to *y* is 25 times the ratio of *y* to *x*, then what is the ratio of *x* to *y*?
 - (a) 1:5 (b) 5:1
 - (c) 25:1 (d) 1:25
- 82. A milk vendor bought 28 L of milk at the cost of Rs. 8.50 per litre. After adding some water, he sold the mixture at the same price. If he gains 12.5%, how much water did he add?
 - (a) 5.5 L (b) 4.5 L
 - (c) 3.5 L (d) 2.5 L
- 83. If *m* and *n* are two integers such that $m = n^2$ - *n*, then $(m^2 - 2m)$ is always divisible by
 - (a) 9 (b) 16
 - (c) 24 (d) 48

84. Which one is the largest among the following?

(a) 0.725 (b) 0.725

(c) 0.725 (d) 0.725

- 85. 10% of the inhabitants of a certain city left that city. Later on 10% of the remaining inhabitants of that city again left the city. What is the remaining percentage of population of that city?
 - (a) 80% (b) 80.4%

(c) 80.6% (d) 81%

- 86. If the rate of interest is 10% per annum and is compounded half yearly, the principal of Rs. 400 in 3/2 yr will amount to
 - (a) Rs. 463.00 (b) Rs. 463.05
 - (c) Rs. 463.15 (d) Rs. 463.20
- 87. The number of workers in the employment guarantee scheme increased by 15 which resulted into an increase of 20%. What are the initial number of workers?
 - (a) 60 (b) 75
 - (c) 80 (d) 90
- 88. Two men *P* and *Q* start from a place walking at 5 km at 6.5 km/h respectively. What is the time they will take to ?? 92 km apart if they walk in opposite directions?

(a)	2 h	(b)	4 h

- (c) 6 h (d) 8 h
- 89. In an army camp ration is available for 100 soldier 10 days. After 2 days, 60 soldiers joined. Then for many more days will the remaining ration last?
 - (a) 7 days (b) 6 days

(c) 5 days (d) 4 days

90. Two trains travel in the same direction at 50 km/h and 32 km/h respectively. A man in the slower train observes that 15 s elapse before the faster train completely passes him. What is the length of the faster train?
(a) 75 m
(b) 125 m

(c) 150 m (d)
$$\frac{625}{3}$$
 m

91. A person walks a distance in 114 days, when he rests 9 h a day. How long will he take to walk twice the distance if he walks twice as fast and rests twice as long each day as before?

- (a) 57 days (b) 228 days
- (c) 285 days (d) 324 days
- 92. If *x* : *y* = 1 : 3, *y* : *z* = 5: *k*, *z* : *t* = 2 : 5 and *t* : *x* + 3 :4. then what is the value of *k*?
 - (a) 1/2 (b) 1/3
 - (c) 2 (d) 3
- 93. The number $\sqrt{0.0001}$ is
 - (a) a rational number less than 0.01
 - (b) a rational number
 - (c) an irrational number
 - (d) neither a rational number nor an irrational number
- 94. A person P started a business with a capital of Rs. 2525 and another person Q joined P after some months with a capital of Rs. 1200. Out of the total annual profit of Rs. 1644, P's share was Rs. 1212. When did *Q* join as partners?
 - (a) After 2 months (b) After 9 months
 - (c) After 4 months (d) After 5 months
- 95. The mess charges for 35 students for 24 days in Rs. 6300. In how many days will the mess charges be Rs. 3375 for 25 students?(a) 12(b) 15

- 96. If $a + b = 2m^2$, b + c = 6m, a + c = 2, where *m* is a real number and $a \le b \le c$, then which one of the following is correct?
 - (a) $0 \le m \le 1/2$ (b) $-1 \le m \le 0$
 - (c) $1/3 \le m \le 1$ (d) $1 < m \le 2$
- 97. What is the least number which when divided by 42, 72 and 84 leaves the remainders 25, 55 and 67 respectively?
 (a) 521
 (b) 512
 (c) 504
 (d) 487
- 98. A trader sells two cycles at Rs. 1188 each and gains 10% on the first and loses 10% on the second. What is the profit or loss percent on the whole?
 - (a) 1% loss (b) 1% gain
 - (c) No loss no gain (d) 2% loss

½ Solved Paper									
99. A person borrowed Rs. 7500 at 16% compound interest. How much does he have to pay at the end of 2 yr to clear the loan?					100. <i>P</i> and <i>Q</i> can do a job in 2 days: <i>Q</i> and <i>R</i> can do it in 4 days; and <i>P</i> and <i>R</i> in $12/5$ days. What is the number of days required for <i>P</i> alone to do the job?				
(a) Rs.	9900	(b) R	s. 10092		(a) 5.	/2	(b)	3	
(c) Rs.	11000	(d) R	s. 11052		(c) 14	4/5	(d)	6	
ANSWERS									
1. (a)	2. (b)	3. (c)	4. (c)	5. (c)	6. (d)	7. (b)	8. (b)	9. (b)	10. (d)
11. (c)	12. (a)	13. (a)	14. (c)	15. (c)	16. (b)	17. (c)	18. (b)	19. (b)	20. (b)
21. (c)	22. (c)	23. (b)	24. (c)	25. (d)	26. (c)	27. (a)	28. (a)	29. (c)	30. (c)
31. (b)	32. (b)	33. (d)	34. (d)	35. (d)	36. (a)	37. (a)	38. (a)	39. (c)	40. (b)
41. (d)	42. (b)	43. (c)	44. (b)	45. (c)	46. (d)	47. (a)	48. (a)	49. (c)	50. (a)
51. (a)	52. (c)	53. (b)	54. (c)	55. (d)	56. (c)	57. (b)	58. (d)	59. (d)	60. (c)
61. (d)	62. (a)	63. (d)	64. (b)	65. (b)	66. (c)	67. (c)	68. (c)	69. (c)	70. (c)
71. (b)	72. (c)	73. (b)	74. (c)	75. (b)	76. (c)	77. (a)	78. (c)	79. (b)	80. (d)
81. (b)	82. (c)	83. (c)	84. (d)	85. (d)	86. (b)	87. (b)	88. (d)	89. (c)	90. (a)
91. (c)	92. (a)	93. (b)	94. (b)	95. (c)	96. (c)	97. (d)	98. (a)	99. (b)	100. (b)

EXPLANATIONS

1.
$$GM = \sqrt[3]{125 \times 729 \times 1331} \\ = \sqrt[3]{5^3 \times 9^3 \times 11^3} \\ = 5 \times 9 \times 11 \\ = 495$$

4. Let three positive integers whose median is

 $HM = \frac{2 \times 8 \times 12}{8 + 12}$

 $= \frac{2 \times 8 \times 12}{20}$

 $=\frac{48}{5}=9.6$

 $HM = \frac{2 \times 9 \times 11}{9 + 11}$

 $AM = \frac{1+5+6}{3} = \frac{12}{3} = 4$

$$= \sqrt[3]{5^3 \times 9^3 \times 11^3}$$

= 5 × 9 × 11 III.
= 495
2. Statement Ist and IIIrd are primary data.
3. Mode can be obtained from historgram.

$$= \frac{2 \times 9 \times 11}{20} = 9.9$$
$$HM = \frac{2 \times 6 \times 24}{6 + 24}$$
$$= \frac{2 \times 6 \times 24}{30}$$
$$= \frac{48}{5} = 9.6$$

 $2 \times 9 \times 11$

Hence Ist & IIrd pirs have same harmonic means.

6. Given
$$27 \times (81)^{2n+3} - 3m = 0$$

 $\Rightarrow 33 \times (3)^{8n+12} = 3^m$
 $\Rightarrow 3^{8n+15} = 3^m$
 $\Rightarrow m = 8n + 15$
7. Let the GP series be
a, *ar*, *ar²*, *ar³*, *ar⁴*,
According to the question
 $ar^2 = a + 9$
 $\Rightarrow a (r^2 - 1) = 9$... (i)

II.

5 are 1, 5, 6

:.

5. I.

 $ar = ar^3 + 18$ and \Rightarrow $ar(1-r^2) = 18$... (ii) $\frac{a(r^2-1)}{-ar(r^2-1)} = \frac{9}{18}$ *:*. -r = 2 \Rightarrow :. From Eq. (i) a(4-1) = 9*a* = 3 \Rightarrow $\frac{\log_{13}(10)}{\log_{169}(10)} = \frac{\log_{13}(10)}{\log_{13^2}(10)}$ 8. $=\frac{1}{1/2}=2$ $t = \frac{d}{s}$ 9. Ist case, $t=\frac{8}{4}=2h$ \Rightarrow $t=\frac{6}{3}=2h$ IIn case, $t = \frac{4}{2} = 2h$ IIIrd case, Average speed = $\frac{\text{total distance}}{\text{total time}}$ $= \frac{8+6+4}{2+2+2} = \frac{18}{6}$ 10. If $A \cap B = \phi$, then it is not necessary that either $A = \phi$ or $B = \phi$. 11. For $0 < \theta < \phi < 90^{\circ}$ $0 < \sin^2\theta, \cos^2\theta < 1$ $\therefore \sin^2\theta + \cos^2\phi < 2$ 12. Given, $(\sin\theta + \csc\theta) = 2.5$ $\Rightarrow \left(\sin\theta + \frac{1}{\sin\theta}\right) = \frac{5}{2}$ $\Rightarrow 2 \sin^2 \theta - 5 \sin \theta + 2 = 0$ $\Rightarrow 2 \sin^2 \theta - 4 \sin \theta - \sin \theta + 2 = 0$ $\Rightarrow 2\sin\theta (\sin\theta - 2) - 1 (\sin\theta - 2) = 0$ \Rightarrow (2sin θ – 1) (sin θ – 2) = 0 $\Rightarrow \sin \theta = 1/2$ (Q sin $\theta \neq 2$) $\Rightarrow \theta = 30^{\circ}$

1/2 Solved Paper 13. Let angles of a triangle in AP are a, a + d, a + 2dAlso, a + 2d = 2a $a + a + d + a + 2d = 180^{\circ}$ $3a + 3d = 180^{\circ}$ \Rightarrow $3a+3\left(\frac{a}{2}\right) = 180^{\circ}$ ⇒ $9a = 360^{\circ}$ \Rightarrow $\Rightarrow a = 49^{\circ}, d = 20^{\circ}$ \therefore Ratio of angles = 40° : 60° : 80° = 2:3:414. In $\triangle BAC$. E

In ΔBDC ,

$$\tan\beta = \frac{s}{q}$$

$$\Rightarrow \qquad q = \frac{s}{\tan 3\alpha} \qquad \dots (ii)$$

On subtracting Eqs. (ii) from (i), we get

$$p - q = \frac{s}{\tan \alpha} - \frac{s}{\tan 3\alpha}$$
$$= s \left[\frac{\tan 3\alpha - \tan \alpha}{\tan \alpha \tan 3\alpha} \right]$$

16. $\csc^2\theta - 2 + \sin^2\theta = (\sin \theta - \csc \theta)^2$ Hence, it is always non-negative

17. Given
$$\tan \theta = \frac{p}{q}$$

18. $\sin^3 60^\circ \cot 30^\circ - 2 \sec^2 45^\circ + 3 \cos 60^\circ \tan 45^\circ - \tan 2 60^\circ$

$$= \left(\frac{\sqrt{3}}{2}\right)^3 (\sqrt{3}) - 3(\sqrt{2})^2 + 3\left(\frac{1}{2}\right)(1) - (\sqrt{3})^2$$
$$= \frac{9}{8} - 4 + \frac{3}{2} - 3 = \frac{-35}{8}$$

- 19. As we know sin *x* is increasing from 0 to 90° ∴ sin *y* > sin *x*
- 20. Let angles in circular measure are *A* and *B*, then degree measures will be $\frac{\pi A}{180^{\circ}}$ and

$$\frac{\pi B}{180^{\circ}}$$

According to the question
$$A + B = 1$$

and
$$\frac{\pi A}{180^{\circ}} - \frac{\pi B}{180^{\circ}} = 1$$
 ...(ii)
On solving Eqs. (i) and (ii), we get

... (i)

$$A = \frac{90}{\pi} \left(\frac{\pi}{180} + 1 \right)$$
$$\Rightarrow \qquad A = \left(\frac{1}{2} + \frac{90}{\pi} \right)$$
From Eq. (i)

$$\frac{1}{2} + \frac{90}{\pi} + B = 1$$

$$\Rightarrow \qquad B = \left(\frac{1}{2} - \frac{90}{\pi}\right)$$
21. Given $\frac{\cos\theta}{1 - \sin\theta} - \frac{\cos\theta}{1 + \sin\theta} = 2$

$$\Rightarrow \frac{\cos\theta + \sin\theta\cos\theta - \cos\theta + \cos\theta\sin\theta}{1 - \sin^2\theta}$$

$$\Rightarrow 2\sin\theta\cos\theta - 2\cos^2\theta$$

$$\Rightarrow \cos^2\theta (\tan\theta - 1) = 0$$

$$\Rightarrow \tan\theta - 1 \operatorname{and} \cos\theta \neq 0$$

 $\Rightarrow \theta = \frac{\pi}{4}$

22. I. RHS = $\cos^2\theta (1 + \tan\theta) (1 - \tan\theta)$ = $\cos^2\theta (1 - \tan^2\theta)$

$$= \cos^{2}\theta \left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\cos^{2}\theta}\right)$$
$$= \frac{\cos^{2}\theta - \sin^{2}\theta}{\cos^{2}\theta + \sin^{2}\theta} = LHS$$
II. LHS
$$= \frac{1 + \sin\theta}{1 - \sin\theta} = \frac{(1 + \sin\theta)^{2}}{1 - \sin^{2}\theta}$$
$$= \left(\frac{1 + \sin\theta}{\cos\theta}\right)^{2}$$
$$= (\sec\theta + \tan\theta)$$
Hence both statements are correct

Hence, both statements are correct.

- 26. The quadrilateral formed by joining the mid points of the sides is a parallelogram.
- 27.74. Let $\angle XOB = 0$

 $\angle XOB + \angle OBX + \angle OXB = 180^{\circ}$ $\Rightarrow \theta + 45^{\circ} + \angle OXB = 180^{\circ}$ $\Rightarrow \angle OXB = 180^{\circ} - 45^{\circ} - \theta$ $\Rightarrow \angle OXB = 135^{\circ} - \theta$ $Here, \angle OXA + \angle OXB = 180^{\circ}$ $\Rightarrow \angle OXA + 135^{\circ} - \theta = 180^{\circ}$

 $\therefore \quad \angle FHE + \angle HEB = 180^{\circ}$ (co-interior angle) $\Rightarrow \quad \angle FHE + 70^{\circ} = 180^{\circ}$

 $\Rightarrow \qquad \angle FHE = 110^{\circ}$

29. Since anlge subtend on the circumference is half of the angle subtend on centre.

In Δ *MCB*,

:..

 $\angle C + \angle B + \angle M = 180^{\circ}$ $\Rightarrow 23^{\circ} + \angle B + 90^{\circ} = 180^{\circ}$ $\Rightarrow \angle B = 67^{\circ}$

31. Number of point is 1, because circumcentre is the only piont in the plane of a triangle, which is equidistant from the centre.

Volume of smaller cone = $\frac{1}{3}\pi(1)^2 \times 2$ $=\frac{2\pi}{3}$ cm² Required no. of cones = $\frac{96\pi}{2\pi}$ = 144

3 cm

 $= 96\pi$ cm²

С

1/2 Solved Paper $AB^2 = 10^2 - 8^2 = 36$ $AB = 6 \,\mathrm{cm}$ 43. Suppose water level increase by *x* cm. \therefore Volume of cylindrical can = π (12)² × *x* Volume of sphere $=\frac{4}{3}\pi(6)^3 = 288\pi \text{ cm}^3$ *:*.. $\pi 144x = 288\pi$ $x = 2 \,\mathrm{cm}$ \Rightarrow 44. Circumsference of parth = $2\pi \times 50$ m $= 10000\pi \,\mathrm{cm}$ Circumference of wheel = $2\pi \times 50 = 100\pi$ cm Distance covered in 60 min = 10000π Distance covered in 1 min = $\frac{10000}{60}\pi$ Distance covered in 15 min = $\frac{10000}{60}\pi \times 15$ $= 2500 \pi$ No. of revolution = $\frac{2500\pi}{100\pi}$ = 25 45. Area of $\triangle ABC = \frac{1}{2} ab$ Again, area of $\triangle ABC = \frac{1}{2}cp$ b С $\frac{1}{2}ab = pc$ *:*. pc = ab46. Volume of frustum of cone $=\frac{\pi h}{3}[R^2+r^2+Rr]$ $=\frac{\pi\times 6}{3}[5^2+3^2+15]$

 $= \pi \times 2 \times 49$ $= 98\pi$ cu unit 47. Volume of hemisphere = $\frac{2}{3}\pi r^3$ $=\frac{2}{3}\times\frac{22}{7}\times21\times21\times21$ $= 44 \times 441$ $= 19404 \text{ cm}^{3}$ $=\frac{19404}{1000}L$ = 19.4 L 48. Given OS = 6 cm $\therefore PQ = QR = RS = 4 \text{ cm}$ т U : Perimeter of shaded region = Perimeter of semicircle *PTS* + Perimeter of semicircle QUS + perimeter of semicricle PVQ $=\pi(6) + \pi(4) + \pi(2)$ $= 12\pi \,\mathrm{cm}$ 49. Since, volume of cone $V_1 = \frac{4}{3}\pi r^2 h$ After increasing by 20% of radius and height then volume of cone $V_2 = \frac{4}{3}\pi \left(1\frac{1}{5}\right)^2 r \left(1+\frac{1}{5}\right)h$ $=\frac{4}{3}\pi\times\frac{216}{125}r^2h$ $\therefore \text{ Required percentage} = \frac{V_2 - V_1}{V_1} \times 100$ $=\frac{\frac{4}{3}\pi r^2 h\left(\frac{216}{125}-1\right)}{\frac{4}{3}\pi r^2 h}\times 100$

$$= \frac{91}{125} \times 100 = 72.8\%$$

= 73% (approx.)
50. Area of 2 bigger semicircle = $2 \times \frac{\pi r^2}{2}$
= $2\pi \left(\frac{0.5}{2}\right) \times \frac{1}{2}$
= $\frac{0.25\pi}{4}$ cm²
Area of 5 smaller semicircles = $\frac{5\pi r^2}{2}$
= $5 \times \pi \times \frac{1}{2} \times \left(\frac{0.5}{4}\right)^2$
= $\frac{5\pi}{2} \times \frac{0.25}{16}$
= $\frac{1.25\pi}{32}$ cm²
Area of rectangle *ABCD* = $2 \times 0.5 = 1$ cm²
Area of remaining portion
= $1 - \frac{0.25}{4}\pi - \frac{1.25\pi}{32}$
= $1 - \frac{\pi}{16} - \frac{5\pi}{128}$
= $\frac{128 - 8\pi - 5\pi}{128}$
= $\frac{128 - 13\pi}{128}$ cm²
51. Circumference of circle = $2\pi \times 42$
= $2 \times \frac{22}{7} \times 42$ = 264 cm
Perimeter of square = $4x$
 \Rightarrow $264 = 4x$
 \Rightarrow $x = 66$ cm
52. Height of water in a second = 30×60

i.e., h = 1800 cm Area of cross section $\pi r^2 = 5 \text{ cm}^2$ Volume of water flow in one minute = $\pi r^2 h$ $= 5 \times 1800$ $= 9000 \text{ cm}^3$ $= \frac{9000}{1000}L$ = 9 L54. Given, $\frac{\text{volume of Ist cone}}{\text{volume of IIn cone}} = \frac{4}{5}$ $\frac{\frac{1}{3}\pi(2)^2 h_1}{\frac{1}{3}\pi(3)^2 h_2}$ *:*.. $\frac{4h_1}{9h_2} = \frac{4}{5}$ \Rightarrow $\frac{h_1}{h_2} = \frac{9}{5}$ \Rightarrow 55. Let l = 12.5 cm, b = 10 cm,h = 7.5 cm: Area of a brick = 2(lb + bh + hl) $= 2[12.5 \times 10 + 10 \times 7.5 + 12.5 \times 7.5]$ = 2[125 + 75 + 93.75] $= 2 \times 293.75 = 587.50 \text{ cm}^2$ Area to be painted = 5.875 m^2 $= 5.875 \times 10^4 \text{ cm}^2$ $= 58750 \text{ cm}^2$ No. of bricks = $\frac{58750}{587.50} = 100$ 56. In option (c). When we put p = 1, 2, 3, 4,... we get 3 or 4; 6 or 7, 9 or 11, 12 or 13, 15 or 16 Hence, we get all square integers. 57. The given number is divisible by 9 if last two digits is divisible by 3. \therefore We take $\otimes = 1$ 58. Given $X = (a + \sqrt{a^2 + b^3})^{1/3} + (a - \sqrt{a^2 + b^3})^{1/3}$

¹/₂ Solved Paper

On cubing both sides, we get

$$x^{3} = (a + \sqrt{a^{2} + b^{3}}) + (a - \sqrt{a^{2} + b^{3}})^{1/3} (a - \sqrt{a^{2} + b^{3}})^{1/3}$$

 $+3(a + \sqrt{a^{2} + b^{3}})^{1/3} (a - \sqrt{a^{2} + b^{3}})^{1/3}$
 $\Rightarrow (a + \sqrt{a^{2} + b^{3}})^{1/3} + (a + \sqrt{a^{2} + b^{3}})^{1/3}$
 $\Rightarrow x^{3} = 2a - 3b(x)$
 $\Rightarrow x^{3} + 3bx - 2a = 0$
59. Given, $\frac{x(x-1) - (m+1)}{(x-1)(m-1)} = \frac{x}{m}$
 $\Rightarrow m(x^{2} - x - m - 1) x (mx - x - m + 1)$
 $\Rightarrow mx^{2} - mx - m(m+1)$
 $= mx^{2} - x^{2} - mx + x$
 $\Rightarrow x^{2} - x - m(m+1) = 0$
Let roots be α and α
 $\therefore \alpha + \alpha = 1, \alpha. \alpha = -m(m+1)$
 $\Rightarrow \alpha = \frac{1}{2} (\frac{1}{2})^{2} = -m(m+1)$
 $\Rightarrow 4m^{2} + 4m + 1 = 0$
 $\Rightarrow (2m + 1)^{2} = 0$
 $\Rightarrow m = -\frac{1}{2}$
60. We know, if $a + b + c = 0$
 $\therefore a^{3} + b^{3} + c^{3} = 3abc$
Here $x - y + y - z + z - x = 0$
 $\therefore \frac{(x-u)^{3} + (y-z)^{3} + (z-x)^{3}}{4(x-y)(y-z)(z-x)} = \frac{3}{4}$
61. I. Let 3 natural no, are $m = 16, n = 15, k = 20$
 $\therefore g_{m(nk)} = g_{16(300)}g_{(mn)k} = g_{240(20)}$
 $= 4 = 20$
 $\therefore g_{m(nk)} = g_{16(300)}g_{(m)k} = g_{240(20)}$
 $= 1 \times 5 = 5$
and $g_{mk} = g_{16(300)}g_{(m)k} = g_{16(300)}g_{(m)k}$

62. Since given system of equations

$$x + 2y - 3 = 0 \text{ and } 5x + ky + 7 = 0$$
has no solution.

$$\therefore \qquad \begin{vmatrix} 1 & 2 \\ 5 & k \end{vmatrix} = 0$$

$$\Rightarrow \qquad k - 10 = 0$$

$$\Rightarrow \qquad k = 10$$
63. Given $x + y + z = 0...(i)$
Now
$$\frac{1}{x^2 + y^2 - z^2} = \frac{1}{z^2 - 2xy - z^2}$$

$$= -\frac{1}{2xy}$$

$$\therefore \qquad \frac{1}{x^2 + y^2 - z^2} + \frac{1}{y^2 + z^2 - x^2} + \frac{1}{z^2 + x^2 - y^2}$$

$$= \frac{1}{-2xy} + \frac{1}{-2yz} + \frac{1}{-2zx}$$

$$= -\frac{1}{2} \left[\frac{z + x + y}{xyz} \right]$$

$$= 0 \text{ [from Eq. (i)]}$$
64. Given $AC^2 = AB \times CB$

$$\Rightarrow \qquad x^2 = 2 \times (2 - x)$$

$$\Rightarrow \qquad x^2 = 4 - 2x$$

$$\Rightarrow \qquad x^2 + 2x - 4 = 0$$

$$\Rightarrow \qquad x = -\frac{1 \pm \sqrt{5}}{2 \times 1}$$
Now, $BC = 2 - (-1 + \sqrt{5})$

$$= 3 - \sqrt{5} (\text{neglect } 3 + \sqrt{5})$$
65. Given $pq + qr + rp = 0$

$$\therefore \qquad \frac{p^2}{p^2 - qr} + \frac{q^2}{q^2 - rp} + \frac{r^2}{r^2 - pq}$$

$$= \frac{p^2}{p^2 + rp + pq} + \frac{q^2}{q^2 + pq + qr} + \frac{r^2}{r^2 + qr + rp}$$

$$= \frac{p}{p+r+q} + \frac{q}{q+p+r} + \frac{r}{r+q+p}$$

$$= \frac{p+q+r}{p+q+r} = 1$$
66. Given, $a = \frac{1+x}{2-x}$

$$\therefore \frac{1}{a+1} + \frac{2a+1}{a^2-1} = \frac{3a}{a^2-1}$$

$$= \frac{3\left(\frac{1+x}{2-x}\right)}{\left(\frac{1+x}{2-x}\right)-1}$$

$$= \frac{3(1+x)(2-x)}{1+x^2+2x-(4+x^2-4x)}$$

$$= \frac{3(1+x)(2-x)}{6x-3} = \frac{(1+x)(2-x)}{(2x-1)}$$
67. Total number of female coffee dirnkers
$$= 5\% \text{ of } 10000 + 15\% \text{ of } 20000$$

$$= \text{Rs. } 3500$$
68. Given $(37)^x = (0.037)^y = 10000$

$$\Rightarrow (37)^x = 10^4 \text{ and } (0.037)^y = 10^4$$

$$\Rightarrow 37 = 10^{\frac{4}{x}+1} \text{ and } 37 = \frac{4}{10^{\frac{4}{y}+3}}$$

$$\Rightarrow \frac{4}{x}+1 \frac{4}{y}+3$$

$$\Rightarrow \frac{4}{x}-\frac{4}{y} = 3-1$$

$$\Rightarrow \frac{1}{x}-\frac{1}{y} = \frac{1}{2}$$
69. Given $a^x = b^y = c^z = k \text{ (say)}$

$$\Rightarrow a = k^{1/x}$$

$$b = k^{1/y}$$

and
$$c = k^{1/z}$$

 \therefore $abc = k^{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$
 \Rightarrow $1 = k^{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$
 $\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$
 \Rightarrow $xy + yz + zx = 0$

- ⇒ xy + yz + zx = 0
 70. When a polynomial is divided by a linear polynomial, then the remainder is either constant or zero polynomial.
- 71. Let roots, be α and β

$$\therefore \alpha + \beta = \frac{-12}{7} \text{ and } \alpha\beta = \frac{18}{7}$$

$$\Rightarrow \alpha^{2} + \beta^{2} + 2\alpha\beta = \frac{144}{49}$$

$$\Rightarrow \alpha^{2} + \beta^{2} = \frac{144}{49} - \frac{36}{7} = \frac{108}{49}$$

$$\therefore \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} = \frac{49}{\frac{18}{7}} = -\frac{6}{7}$$

$$72. \therefore x^{2} + \frac{1}{x^{2}} = \left(x\frac{1}{x}\right)^{2} - 2$$

$$= \left(2 + \sqrt{3} + \frac{1}{2 + \sqrt{3}}\right)^{2} - 2$$

$$= \left(2 + \sqrt{3} + \frac{2 - \sqrt{3}}{1}\right)^{2} - 2 \quad 16 - 2 = 14$$

73. Factor theorem is a special case of remainder thorem.

74. Let
$$f(x) = x^{40} + 2$$

Put $x^4 = -1$
 $\therefore f(x) = (-1)^{10} + 2 = 3$
76. Let the two digits number be $10y + x$.
According to the given condition,
 $x + y = 10$,
and $10y + x - 18 = 10x + y$

www.upscportal.com

9x - 9y = -18 \Rightarrow \Rightarrow x - y = -2On solving, we get x = 4 and y = 6 \therefore Product = $xy = 4 \times 6 = 24$ 77. Now, 3 $(a^3 - b^3) = 3 (a - b) (a^2 + b^2 + ab)$ and 11 $(a^4 - b^4) = 11 (a - b) (a + b) (a^2 + b^2)$ \therefore Required LCM = 33 $(a^3 - b^3) (a + b)$ $(a^2 + b^2)$ 78. Let total no. of students = xand total no. of rows = yStudents in each row = $\frac{X}{V}$ According to given condition $\frac{x}{y} - \frac{x}{y+1} = 2$...(i) and $\frac{x}{y-1} - \frac{x}{y} = 3$ $\Rightarrow -\frac{x}{v} + \frac{x}{v-1} = 3$...(ii) From Eqs. (i) and (ii), we get $-\frac{x}{y+1} + \frac{x}{y-1} = 5$ $\frac{2x}{v^2-1} = 5$ \Rightarrow $x = \frac{5y^2 - 5}{2}$ \Rightarrow

On putting value of x in Eq. (ii), we get

$$\frac{5-5y^2}{2y} + \frac{5y^2 - 5}{2(y-1)} = 3$$
$$\Rightarrow \frac{5(1-y^2)}{2y} + \frac{5(y^2 - 1)}{2(y-1)} = 3$$
$$\Rightarrow \qquad \frac{5(y^2 - 1)}{2y^2 - 2y} = 3$$

 $6y^2 - 6y = 5y^2 - 5$ $y^2 - 6y + 5 = 0$ (y - 5) (y - 1) = 0 \Rightarrow \Rightarrow \Rightarrow $(Q \ y \neq -1)$ y = 5 \Rightarrow From Eq. (i), *:*.. $\frac{x}{5} - \frac{x}{6} = 2$ $\frac{x}{30} = 2$ \Rightarrow x = 60 \Rightarrow 79. Let full fare = Rs. xand reservation charges = Rs. y $\therefore x + y = 362$...(i) and $1\frac{1}{2}x + 2y = 554$ \Rightarrow 3x + 4y = 1108 On solving Eqs. (i) and (ii) we get x = 340, y = 22Hence, reservation charge = Rs. 22. 80. Let total no. of swans = x

No. of swans swimming in the pool = $\frac{7}{2}\sqrt{x}$ Remaining swans = 2 $\frac{7}{2}\sqrt{x}+2 = x$ *:*.. $\frac{7}{2}\sqrt{X} = X - 2$ \Rightarrow

On squaring both sides, we get

$$\frac{49}{4}x = x^2 + 4 - 4x$$

$$\Rightarrow 4x^2 - 65x + 16 = 0$$

$$\Rightarrow (4x - 1) (x - 16) = 0$$

$$\Rightarrow x = 16 \left(Q \ x \neq \frac{1}{4} \right)$$
1. Given $\frac{x}{y} = 25 \left(\frac{y}{x} \right)$

$$\Rightarrow \frac{x^2}{y^2} = \frac{25}{1}$$

8

 $\frac{X}{V} = \frac{5}{1}$ \Rightarrow 82. Total CP of milk = 28×8.50 = Rs. 238 Profit = 12.5% of 238 *:*.. $=\frac{12.5}{100}\times 238 = 29.75$ Let he added × litre of water. Profit = $x \times 8.5$ *:*.. $29.75 = x \times 8.5$ \Rightarrow \Rightarrow x = 3.5 L83. Given, $m = n^2 - n$ $m^2 - 2m = (n^2 - n)^2 - 2(n^2 - n)$ *:*.. $= n (n-1) [n^2 - n - 2]$ = (n+1) n (n-1) (n-2)It is a product of consecutive number. Hence, it is divisible by 24(41). 85. Let initial no. of inhabitants = 100 Firstly after 10% left, no. of inhabitants = 100 - 10 = 90Secondly again 10% left, no. of inhabitants = 90 - 10% of 90 = 81 \therefore Remaining % of population = 81% 86. Given, $R = \frac{10}{2} = 5\%$ T = 3, P = Rs. 400 $A = P\left(1 + \frac{R}{100}\right)$ *:*.. $= 400 \left(1 + \frac{5}{100}\right)^3$ $= 400 \left(\frac{21}{20}\right)^3$ = Rs. 463.05 87. Let initial no. of workers = x20% of x = 15*.*•. $\frac{20}{100} \times x = 15$ \Rightarrow x = 75 \Rightarrow

88. Since, time = $\frac{\text{distance}}{\text{speed}}$ $=\frac{92}{6.5+5}=\frac{92}{11.5}=8$ h 89. Soilders Days 100 8 160 X $\frac{160}{100} = \frac{8}{x}$ \Rightarrow $x = \frac{8 \times 100}{160} = 5$ days \Rightarrow 90. Let *x* is the length of fastest train. Since, time = $\frac{\text{distance}}{\text{speed}}$ $\frac{15}{3600} =$ $\frac{x}{50-32}$ *.*.. $x = \frac{15 \times 18}{3600}$ ⇒ $\Rightarrow x = \frac{3}{40} \text{ km} = \frac{3}{40} \times 1000 = 75 \text{ m}$ 90. Distance Speed hour per day days 1 1 15 114 2 2 6 X $\begin{array}{c}
1:2\\2:1\\6:15
\end{array}$ $\therefore 1 \times 2 \times 6 \times x = 2 \times 1 \times 15 \times 114$ $x = \frac{2 \times 15 \times 114}{2 \times 6}$ x = 285 days \Rightarrow 92. Given x: y = 1:3, y: z = 5:k, z: t = 2:5and t: x = 3:4 $\Rightarrow x: y = 1:3, y: z = 3: \frac{3k}{5}, z: t = \frac{3}{10}: \frac{3}{4}$ and $t: x = \frac{3}{4}: 1$

$$\Rightarrow \qquad k = \frac{1}{2}$$
93. $\sqrt{0.0001} = \sqrt{\frac{00001}{10000}}$
 $= \frac{1}{100} = 0.01$
Hence, it is a rational number.
94. Let *Q* join *x* month.
 \therefore Ratio of capital = 2525 × 12 : 1200 × x
 $= 2525 : 100x$
 $= 101 : 4x$
 \therefore P's profit = $\frac{101}{101 + 4x} \times 1644$
 \Rightarrow 1212 = $\frac{101 \times 1644}{101 + 4x}$
 \Rightarrow $\frac{1}{137} = \frac{1}{101 + 4x}$
 \Rightarrow $4x = 36$
 \Rightarrow $x = 9$
95. According to the question,
 $35 \times 24 : 25 \times x :: 6300 : 3375$
 \Rightarrow $35 \times 24 \times 3375 = 25 \times x \times 6300$
 \Rightarrow $x = \frac{35 \times 24 \times 3375}{25 \times 6300}$
 \Rightarrow $x = \frac{35 \times 24 \times 3375}{25 \times 6300}$
 \Rightarrow $x = \frac{18}{202} = \frac{100}{1000}$
96. Given, $a + b = 2m^2$...(i)
 $b + c = 6m$...(ii)
 and $a + c = 2$ (ii)
 Dn adding Eqs. (i), (ii) and (iii), we get
 $2 (a + b + c) = 2m^2 + 6m + 2$
 \Rightarrow $a + b + c = m^2 + 3m + 1$ (iv)
From Eqs. (iv) - Eq. (ii),
 $a = m^2 - 3m + 1$
From Eq. (iv) - Eq. (iii)
 $b = m^2 + 3m - 1$

From Eq. (iv) - Eq. (i)

$$c = -m^{2} + 3m + 1$$
As $a \le b$ and $b \le c$

$$\Rightarrow m^{2} - 3m + 1 \le m^{2} + 3m - 1$$
 and

$$m^{2} + 3m - 1 \le -m^{2} + 3m + 1$$

$$\Rightarrow 6m \ge 2 \text{ and } 2m^{2} \le 2$$

$$\Rightarrow m \ge \frac{1}{3} \text{ and } -1 \le 1$$

$$\therefore \frac{1}{3} \le m \le 1$$
97. Here difference = $(42 - 25) = (72 - 55)$

$$= (84 - 67) = 17$$
Now, LCM $\frac{1}{2}$ (42, 72, 84) = 504
 \therefore The required number = $504 - 17 = 487$
98. By using the rule,
When there is a profit of x % and loses of y % then the resultant
Profit/loss = $\left(x - y - \frac{xy}{100}\right)$ %
Here $x = y = 10$ %
Profit/loss = $\left(10 - 10 - \frac{10 \times 10}{100}\right)$ % = -1 %
Negative sign represent, there is a loss of 1%.
99. Given, $P = \text{Rs}$. 7500, $R = 16\% n = 2\text{yr}$
 $\therefore A = P\left(1 + \frac{R}{100}\right)^{n}$
 $= 75000\left(1 + \frac{16}{100}\right)^{2}$

A = Rs. 10092

:.