Reg. No. :

Question Paper Code : Q 2373

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Second Semester

Mechanical Engineering

PH 1153 - PHYSICS - II

(Common to Aeronautical Engineering/Automobile Engineering/ Mechatronics Engineering and Production Engineering)

(Regulation 2004)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the main two failures of classical free electron theory?
- 2. Distinguish between brittle and ductile fractures.
- 3. Write down Fermi Dirac distribution function.
- 4. What are compound semi conductors? Give two examples.
- 5. What is one Bohr magnetron?
- 6. What is dielectric o. eak down?
- 7. Mention any tour properties of nuclear forces.
- 8. What are fast breeder reactors?
- 9. Explain the effect of critical magnetic field in superconductors.
- 10. What are metallic glasses?

	PART	B - (5	$\times 1$	16 =	80	marks)
--	------	-------	---	------------	------	----	--------

11.	(a)	(i)	Discuss the Griffith's theory of brittle fracture of a material. (a
		(ii)	Explain the different stages in creep mechanism. (8
			Or
	(b)	Disc	uss the following :
		(i)	Point defects and line defects. (a
		(ii)	Edge dislocation and screw dislocation (a
12.	(a)	(i)	Derive an expression for the density of states (1
		(ii)	Discuss how it is used to calculate the Fermi energy of electrons a 0 K.
			(2005 Or anturest)
	(b)		ain with necessary theory the Hell effect and the experiment
		meth	nod to determine the electrical conductivity of a semi conductor. (12 + 3)
			Tealson as = s = (1 > A TRAG
13.	(a)	(i)	Discuss the domain theory of forromagnetism. (
		(ii)	Explain how the domain theory can be used to explain the magnet
			behaviour of ferromagnetic materials.
		(iii)	What are ferrites?
			Or
	(b)	(i)	Obtain the expression for Lorentz field in a dielectric material (1
		(ii)	Derive Clausius Mosotti relation.
			Give the theory of liquid drop model and discuss how nuclear fission
14.	(a)	(i)	is explained based on liquid drop model. (10 +
14.	(a)	(i) (ii)	
14.	(a)		is explained based on liquid drop model. (10 + Calculate the energy released in the fusion of two deuterium nucl
14.	(a) (b)		is explained based on liquid drop model. $(10 + Calculate the energy released in the fusion of two deuterium nucl mass of _1H^2 = 2.01478 amu and mass of _2He^4 = 4.00388. ($

2

Q 2373

15. (a)

(i)

Explain Type 1 and Type 2 superconductors.

(ii) Explain Meissner effect and the effect of isotopes on superconductors. (8)

3

- (b) (i) What are nanophase materials? Explain how the physical properties vary with geometry. (8)
 - (ii) What are shape memory alloys? Mention four applications of shape memory alloys. (8)

Q 2373

(8)