Reg. No. : \square

Question Paper Code: S 4706

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Second Semester
Mechanical Engineering
ME 132 - THERMODYNAMICS
(Regulation 2001)
Time : Three hours
L'aximum : 100 marks

Approved Thermodynamic charts and tables permitted for use.
However they shall not contain any han written material.
Answer ALL quectıns.
PART A - ($10 \times 4-20$ marks $)$

1. Define mechanical, chemical and tiornal equilibrium.
2. What are point functions? Give oxample.
3. Enunciate the Clausius state nent of second law of thermodynamics.
4. Define the terms source ond sink.
5. Give the use of g \in 7c: alized compressibility chart.
6. What are red properties?
7. Define the terms : Degree of superheat, degree of subcooling.
8. What is quality of steam?
9. What do you understand by higher heating value and lower heating value of a fuel?
10. What are Theoretical air and excess air?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) One kg of ice at $-5^{\circ} \mathrm{C}$ is exposed to the atmosphere which is at $20^{\circ} \mathrm{C}$. The ice melts and comes into thermal equilibrium with the atmosphere (i) determine the entropy increase of the universe (ii) what is the minimum amount of work necessary to convert the water back to ice at $5^{\circ} \mathrm{C}$? Assume C_{p} for ice as $2.093 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and the latent heat of fusion of ice as $333.3 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.

Or

(b) (i) Prove that for an ideal gas $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$.
(ii) Apply the steady flow energy equation to a Turbine and deduce an expression for work.
12. (a) A room for four persons has two fans, each 0 . 1 suming 0.18 kW power, and three 100 W lamps. Ventilation air at ihe rate of $80 \mathrm{~kg} / \mathrm{h}$ enters with an enthalpy of $84 \mathrm{~kJ} / \mathrm{kg}$ and leaves with a_{2}. enthalpy of $59 \mathrm{~kJ} / \mathrm{kg}$. If each person puts out heat at the rate of $631 \mathrm{k}, / \mathrm{h}$ determine the rate at which heat is to be removed by a room by eroum cooler, so that a steady state is maintained in the room.
(b) Two reversible heat engir as -1 and B are arranged in series A rejecting heat directly to B. Engin: A receives 200 kJ at a temperature of $421^{\circ} \mathrm{C}$ from a hot source, wile o.gine B is in communication with a cold sink at a temperature of 4.1 C . the work output of A is twice that of B, find:
(i) The interme diate temperature between A and B ,
(ii) The efficier y of each engine.
13. (a) A mixtura of ideal gases consists of 3 kg of nitrogen and 5 kg of carbon dioxide at a pressure of 300 kPa and a temperature of $20^{\circ} \mathrm{C}$. Find :
(i) tire mole fraction of each constituent
(ii) the equivalent molecular weight of the mixture
(iii) the equivalent gas constant of the mixture
(iv) the partial pressures and the partial volumes.
(b) (i) A volumetric analysis of a gaseous mixture yields the following results:
$\mathrm{CO}_{2}=12.0 \%, \mathrm{O}_{2}=4.0 \%, \mathrm{~N}_{2}=82.0 \%, \mathrm{CO}=2.0 \%$.
Determine the analysis on mass basis and determine the molecular weight and the gas constant on mass basis for the mixture. Assume ideal gas behaviour.
(ii) State any one equation of state for real gas and show how the deviation from ideal gas behaviour is accounted for.
14. (a) An air-water vapour mixture at $0.1 \mathrm{Mpa}, 30^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ has a volume of $50 \mathrm{~m}^{3}$. Calculate the specific humidity, dew point, wnt bulb temperature, mass of dry air and mass of water vapour.

Or

(b) (i) A compressor is used to bring saturate? water vapour at 1 Mpa up to 17.5 MPa , where the actual exi+ in $1 . p$ erature is $650^{\circ} \mathrm{C}$. Find the isentropic compressor efficiency ard d atropy generation.
(ii) Define specific humidity, relative humidity and dew point.
15. (a) (i) Explain the terms : Sensil le enthalpy, absolute enthalpy, enthalpy of formation, and equivairtise ratio.
(ii) By applying the first 1 a - of thermodynamics to a constant pressure adiabatic combustor, explain how the adiabatic flame temperature can be determinf a for a given fuel-air mixture.

Or

(b) (i) Define enthaipy of formation.
(ii) Explain the method of calculating adiabatic flame temperature of a fue?

