Reg. No. :
प111111.111

Question Paper Code : P 1414

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester
Mechanical Engineering
ME 1252 - KINEMATICS OF MACHINERY
(Common to Third Semester-Mechatronics Engin-ering)
(Also common to B.E. (Part-time) Third Semester Mechani'al Engineering - Regulation 2005)
(Regulation 2004)
Time : Three hours
Maximum : 100 marks
Sketches to be drawn neatly.
Give brief procedure for geareal constructions.
A3 size drawing sheet wil we issued, if required.
Answer I^{1} questions.

$$
\text { PART } 1-10 \times 2=20 \text { marks })
$$

1. What is Grashoff's law for a Jur bar linkage?
2. Sketch an offset slider -r.nk mechanism.
3. How angular velosit of a link is calculated from a velocity diagram?
4. Write the nam? or the mechanism shown in figure.

5. In context with Cam, define Pitch point.
6. What is high speed cam?
7. What is interference in involute teeth?
8. Define velocity ratio of an epicyclic gear train.
9. What is friction angle?
10. State the condition for self locking of screw jack.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) In a whitworth quick return mechanism, iriring crank is 15 cm long. The distance between the fixed cente is 10 cm . The line of stroke of ram passes through the cente. w. rotation of slotted lever, whose free end is connected to the ram by a connecting link. Deternine the ratio of time of cuitins oo time of return.
(ii) Determine the number of ctree of freedom of the following mechanisms, shown in the figure 1.
(1)

(2)

(4)

Fig. 1.
Or
(b) (i) Sketch the following straight line generators and show the path traced by the point.
(1) Peaucillier mechanism
(2) Pantograph linkage.
(ii) Explain with sketches any two inversions of a double slider crank mechanism.
12. (a) In a four bar linkage, link AD is fixed and crank AB rotates at $10 \mathrm{rad} / \mathrm{sec}$ constants. (clockwise). The lengths of various links are $A B=60 \mathrm{~mm} ; A D$ $=120 \mathrm{~mm} ; \mathrm{BC}=\mathrm{CD}=70 \mathrm{~mm} ; \angle D A B=60^{\circ}$. Both B and C lie on the same side of $A D$. Determine.
(i) Angular velocities of link BC and CD
(ii) Angular accelerations of link BC and CD .

Or
(b) The dimensions of various links of a nechanism as shown in the figure 2 are as follows.
$\mathrm{AB}=25 \mathrm{~mm} ; \mathrm{BC}=175 \mathrm{~mm} ; \mathrm{CL}=25 \mathrm{~mm} ; \mathrm{AD}=150 \mathrm{~mm} ; \mathrm{BE}=(3 / 4) \mathrm{EC} ;$ $\mathrm{EF}=\mathrm{FG}=100 \mathrm{~mm} ; \angle D A B=105^{\circ}$. The crank AB rotates at 200 rpm . Determine
(i) Velocity of G
(ii) Angular velocitv of link EF
(iii) Velocity of clacing of EF in the swivel block S.

Fig. 2.
13. (a) (i) Sketch a plate cam mechanism with roller follower and mark.
(1) Pitch curve
(2) Cam profile
(3) Base circle
(4) Prime circle
(5) Rise
(6) Return
(7) Dwell.
(ii) Derive equation of motion and its derivatives for a tangent cam with roller follower on straight surface
Or
(b) Draw the profile of cam when the iclower moves with cycloidal motion for both out stroke and return stiok as detailed below.
(i) Outstroke with maximin displacement of 48 mm during 180° of cam rotation
(ii) Return stroke fo the next 100° of cam rotation
(iii) Dwell for the maining period.

The mininum radius of the cam is 30 mm and diameter of roller is 15 mm . The axis of the follower passes through the axis of the cam shati.
14. (a) (i) Derive an expression for minimum number of teeth on pinion to avoid interference.
(ii) An epicyclic gear train, as shown in figure 3 is composed of a fixed annular wheel A having 150 teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being
concentric with A. The wheels B and C are carried on an arm which revolves clockwise at 100 rpm about the axis of A and D. If the wheels B and D have 25 and 40 teeth respectively, determine the number of teeth on C and speed and sense of rotation of wheel C. (8)

Fig. 3.
Or
(b) Two 20° involute spur gears mes: . Wernally and gave a velocity ratio of 3.0. Module of both gears is 3 rm and the addendum is equal to one module. If the pinion rotates at 50 rpm , determine
(i) Minimum number of tectle on each wheel to avoid interference
(ii) Number of pair o te th in contact
(iii) Maximum $\mathrm{vt}^{\prime} \mathrm{ci}^{2} \mathrm{t}$ of sliding at engagement, disengagement and at the point of Ω tact.
15. (a) (i) Derive au expression for braking effort required in a band brake. (8)
(ii) Ar nen belt connects two pulleys The smaller pulley is 300 mm in diameter and runs at 200 rpm . The angle of lap on this pulley is 160° and coefficient of friction is 0.25 . The belt is in point of slipping when 4 kW is being transmitted. Which of the following two alternatives would be more effective in increasing the power rating?
(1) Increasing the initial tension by 10%
(2) Increasing the coefficient of friction by 10%.

Or
13. (a) (i) Sketch a plate cam mechanism with roller follower and mark.
(1) Pitch curve
(2) Cam profile
(3) Base circle
(4) Prime circle
(5) Rise
(6) Return
(7) Dwell.
(ii) Derive equation of motion and its d(rivatives for a tangent cam with roller follower on straight surfa

Or
(b) Draw the profile of cam when the follower moves with cycloidal motion for both out stroke and returrs ${ }^{\text {troke }}$ as detailed below.
(i) Outstroke with max mum displacement of 48 mm during 180° of cam rotation
(ii) Return stroke for the next 100° of cam rotation
(iii) Dwell fo the remaining period.

The i.i.imum radius of the cam is 30 mm and diameter of roller is $15=\mathrm{m}$. The axis of the follower passes through the axis of the cam swaft.
14. (a) (i) Derive an expression for minimum number of teeth on pinion to avoid interference.
(ii) An epicyclic gear train, as shown in figure 3 is composed of a fixed annular wheel A having 150 teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being
concentric with A. The wheels B and C are carried on an arm which revolves clockwise at 100 rpm about the axis of A and D . If the wheels B and D have 25 and 40 teeth respectively, determine the number of teeth on C and speed and sense of rotation of wheel C. (8)

Fig. 3.
Or
(b) Two 20° involute spur gears $\mathrm{me} h$ externally and gave a velocity ratio of 3.0. Module of both gears is ? mm and the addendum is equal to one module. If the pinion rotates at 150 rpm , determine
(i) Minimum number it uer th on each wheel to avoid interference
(ii) Number of pair of eeth in contact
(iii) Maximum louty of sliding at engagement, disengagement and at the point (fs ontact.
15. (a) (i) Deriv a an expression for braking effort required in a band brake. (8)
(ii) Fa pen belt connects two pulleys The smaller pulley is 300 mm in diameter and runs at 200 rpm . The angle of lap on this pulley is 160° and coefficient of friction is 0.25 . The belt is in point of slipping when 4 kW is being transmitted. Which of the following two alternatives would be more effective in increasing the power rating?
(1) Increasing the initial tension by 10%
(2) Increasing the coefficient of friction by 10%.

Or
(b) (i) A multiple disc friction clutch operating in oil is required to transmit 5 kW at 760 rpm . The effective inner and outer radii of the friction surfaces are 40 mm and 70 mm respectively. Determine the minimum number of discs required, if the permissible average pressure for the friction surfaces is 0.35 MPa and coefficient of friction is 0.1 . Assume uniform wear theory is applicable.
(ii) Derive an expression for effort to be applied at the end of a lever of length $l \mathrm{~m}$ to lift a load of W kN in a screw jack.

