Reg. No. : \square

Question Paper Code : S 4696

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester
Mechanical Engineering

MA 038 - NUMERICAL METHODS
(Common to Aeronautical Engineering, Civil Engineering, Insurumentation and Control Engineering, Automobile Engineering, Mechatr inls Engineering and Production Engineering)
(Also common to Fifth Semester - Computer Science \& ra Engineering, Metallurgical
Engineering, Polymer Technology and Sixth Sen ssior - Chemical Engineering, Electronics and Instrumentation Enginee.ing, Textile Technology,

Leather Techno' gy)
(Regulation : 31)
Time : Three hours
Maximum : 100 marks
Answa. $\Delta \perp \mathrm{L}$ questions.
PART A $-(10 \times 2=20$ marks $)$

1. Define diagonal domiranue of a system of algebraic equations.
2. How do you find an nisial approximation of a root of an equation while solving using numerical metnods?
3. Define operat $\approx \Delta, \nabla, \delta$ and μ.
4. Show that $E=e^{h D}$, where E, D are shifting and differential operators respectively and h is interval length.
5. Explain the geometrical meaning of Trapezoidal rule.
6. What is the error in Simpson's one-third rule?
7. Mention any two single step methods for solving an ordinary differential equation subject to initial conditions.
8. Using Euler's method compute $y(0.2)$ and $y(0.4)$, given $y^{\prime}=x+y, y(0)=1$.
9. Classify the following partial differential equation.
$x \frac{\partial^{2} u}{\partial x^{2}}-2 x \frac{\partial^{2} u}{\partial x \partial y}+(x-1) \frac{\partial^{2} u}{\partial y^{2}}+2 \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=0$.
10. Write finite differences of second order for 2D Laplace equation and obtain standard five point formula.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find a real root of the equation $\cos x=3 x-1$ correct to 4 decimal places by iteration method.
(ii) Describe Gauss-Seidel method for solvin: linear system of equations.

Or
(b) (i) Solve the following system of equatio asing Gauss-elimination method. Use partial pivoting if necero ${ }^{\circ}$ ry.
$4 x_{1}+x_{2}+x_{3}=4, x_{1}+4 x_{2}-2 x_{3}=弓$ and $3 x_{1}+2 x_{2}-4 x_{3}=6$.
(ii) Find the dominant eigenvalue an r the corresponding eigenvector of $A=\left(\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ using pone. raethod. Hence find the least eigen value of A^{-1}.
12. (a) (i) Using Stirling's mula and Bessel formula obtain the value of $y(45)$ given.

$$
\begin{array}{ccccc}
x: & 0 & 44 & 48 & 52 \\
v & 51.08 & 63.24 & 70.88 & 79.84
\end{array}
$$

(ii) Derive ? wton's forward and backward interpolation formulae.

Or
(b) (i) Inc following data are taken from the steam table.

Temp. $\left({ }^{\circ} \mathrm{C}\right):$	140	150	160	170	180
Pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right):$	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperatures 142° and 175°.
(ii) Find the equation $y=f(x)$ of least degree using Newton's divided difference formula which passes through the points $(-1,-21)$, $(1,15),(2,12),(3,3)$. Find also y at $x=0$.
13. (a) (i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=0.96$ from the following data.

$x:$	0.96	0.98	1.00	1.02	1.04
$y:$	0.7825	0.7739	0.7651	0.7653	0.7473

(ii) Evaluate $\int_{1}^{2} \frac{2 x}{1+x^{4}} d x$, using the Gauss-Legendre 2-point and 3-point quadrature rules.

Or

(b) (i) The velocity v of a particle at distance s fror a point on its path is given by the table :

| $s(f t):$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $v(f t / \mathrm{sec}):$. | 47 | 58 | 64 | 65 | \leqslant | 02 | 38 |

Estimate the time taken to trevc' 60 ft . by using Simpson's $1 / 3$ rule. Compare the result with Sim JFen's $3 / 8$ rule.
(ii) Using Trapezoidal and Siu'pson's rules, evaluate $\int_{2}^{2.6} \int_{4}^{4.4} \frac{d x d y}{x y}$.
14. (a) (i) Find by Taylor's strius method, the values of y at $x=0.1$ and $x=0.2$ to fiv. oiaces of decimals from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
(ii) Using $\mathrm{K} \sim$ ge-Kutta method of fourth order, find $y(0.8)$ correct to four coimal places if $y^{\prime}=y-x^{2}, y(0.6)=1.7379$.

Or

(b) (i) Using Milne's method find $y(4.4)$ given $5 x y^{\prime}+y^{2}-2=0$ given $y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097$ and $y(4.3)=1.0143$.
(ii) Compute the value of $y(0.2)$ using Runge-Kutta method of fourth order given $y^{\prime \prime}=-y, y(0)=1, y^{\prime}(0)=0$.
15. (a) (i) Solve the boundary value problem :
$x y^{\prime \prime}+y=0, y(1)=1, y(2)=2$,
using finite difference method by taking 4 intervals.
(ii) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1 ; u(0, t)=u(1, t)=0$ using Crank-Nicolson method. Carryout computations for two levels, taking $h=1 / 3$, $k=1 / 36$.
Or
(b) (i) Evaluate the pivotal values of the equatior $\frac{\partial^{2} u}{\partial t^{2}}=16 \frac{\partial^{2} u}{\partial x^{2}}$, taking $h=1$ upto $t=1$. The boundary conditions ure $u(0, t)=u(5, t)=0$, $\frac{\partial u}{\partial t}_{(x, 0)}=0$ and $u(x, 0)=x^{2}(5-x)$.
(ii) Solve the equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=y=0, x=y=5$ with $u=0$ on the boundary and mesh length is 1 .

