\square

Question Paper Code : S 4558

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester
Mechanical Engineering
(Common to Second Semester Mechatronics Engineering)
CE 251 - STRENGTH OF MATERIALS

(Regulation 2001)
Time : Three hours
Maximum : 100 marks
Answer ALL questions
PART A - ($10 \times 2=20$ nerks $)$

1. Derive a relation for change in length oi a bar hanging freely under its own weight.
2. A brass rod 2 m long is fixed at $\mathrm{bo}^{2} t_{1}$ ics ends. If the thermal stress is not to exceed $76.5 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the te mperature through which the rod should be heated. Take the values of $\alpha \mathrm{a} \wedge \mathrm{a} \mathrm{E}$ as $17 \times 10^{-6} / \mathrm{K}$ and 90 GPa respectively.
3. Draw shear force diagrai iv: a simply supported beam of 5 m span is subjected to a clockwise mı ment of $15 \mathrm{kN} . \mathrm{m}$ at a distance of 2 m from the left end.
4. Sketch the bending a: r. ' hear stress distribution for a ' T ' section.
5. Show that the she stress distribution over a rectangular section is parabolic.
6. Calculate the n.aimum torque that a shaft of 125 mm diameter can transmit, if the maxiluun angle of twist is 1° in a length of 1.5 m . Take $\mathrm{C}=70 \times 10^{3} 1 / \mathrm{mm}^{2}$.
7. A cylindrical shell of 500 mm diameter is required to withstand an internal pressure of 4 MPa . Find the minimum thickness of the shell, if maximum tensile strength in the plate material is $400 \mathrm{~N} / \mathrm{mm}^{2}$ and efficiency of joint is 65%. Take factor of safety as 5 .
8. A rectangular R.C simply supported beam of span 3 m and cross section $200 \mathrm{~mm} \times 350 \mathrm{~mm}$ carries a point load of 100 kN at its mid span. Find the maximum slope and deflection of the beam if $\mathrm{E}=0.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
9. Draw conjugate beam for a cantilever carrying uniformly distributed load over the entire span.
10. Define strain energy density.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) State Moment - Area Mohr's theorems.
(ii) A simply supported beam AB of uniform section, 4 m span is subjected to a clockwise moment of $10 \mathrm{KN} . \mathrm{m}$ applied at the right hinge B. Derive the equation to the deflected shape of the beam. Locate the point of maximum deflection and find the maximum deflection.

Or

(b) (i) Derive a relation for change in length rif + var of uniformly tapering circular section subjected to an axial tensile load 'W'.
(ii) A reinforced concrete column $500 \mathrm{~nm} \times 500 \mathrm{~mm}$ in section is reinforced with 4 steel bars of $£ 51 \mathrm{am}$ diameter, one in each corner, the column is carrying a load 1000 KN . Find the stresses in the concrete and steel bars. Tak: L for steel $=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and E for concrete $=14 \times 10^{3} \mathrm{~N} / \mathrm{m} \cdot \mathrm{n}$.
12. (a) Draw the shear force and L ? n ing moment diagram for the beam shown in Figure 12 (a) and also ${ }^{1} a$:ce the point of contraflexure.

Figure 12 (a)
Or
(b) A simply supported beam AB of span 5 m carries a UDL of $25 \mathrm{KN} / \mathrm{m}$ throughout its entire span. Calculate the deflection at its mid span using any method. Assume EI $=2 \times 10^{4} \mathrm{KNm}^{2}$.
13. (a) A solid shaft is subjected to a torque of 100 Nm . Find the necessary shaft diameter if the allowable shear stress is $100 \mathrm{~N} / \mathrm{mm}^{2}$ and the allowable twist is 3° per 10 diameter length of the shaft. Take $C=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Or
(b) (i) State any four assumptions made in the theory of simple bending.
(ii) Derive the bending formula

$$
\begin{equation*}
\frac{M}{I}=\frac{f}{y}=\frac{E}{R} \tag{12}
\end{equation*}
$$

14. (a) A thin cylindrical shell 1.5 m long, internal diameter 300 mm and wall thickness 10 mm is filled up with a fluid at atmospheric pressure. If the additional fluid of $300 \times 10^{3} \mathrm{~mm}^{3}$ is pumped in the shell, find the pressure exerted by the fluid on the shell. Take $\Gamma_{1}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.3$. Also find the hoop stress induced.

Or
(b) (i) Derive a relation for deflection et a closely coiled helical spring subjected to an axial downward loai W .
(ii) A quarter elliptic leaf spring in cm long is made of steel plates of width 10 times the thickne ss. 'The spring is to carry a load of 3 KN and the end deflection is inniced to 5 cm . The bending stress of the plates must not exceea ${ }^{3} \mathrm{~L} \cap \mathrm{f}, \mathrm{N} / \mathrm{mm}^{2}$. Find suitable values of the size and number of plates to he used. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
15. (a) A cantilever of length 2 a 25 carrying a load of W at the free end, and another load of W at its c nntre. Determine by moment area method, the slope and deflection or che cantilever at the free end.

Or
(b) (i) Derive a reiation for strain energy stored in a body due to shear stress.
(ii) A r_{t} ridangular body 500 mm long, 100 mm wide and 50 mm thick is ru.hjected to a shear stress of 80 Mpa . Determine the strain energy $\therefore:$ red in the body. Take $\mathrm{N}=85 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.

