Reg. No.:	9148	1	
		_	

Question Paper Code: P 1263

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester

Electronics and Instrumentation Engineering

EC 1312 - DIGITAL LOGIC CIRCUITS

(Common to Instrumentation and Control Engineering)

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- 1. Show that A(A+B) = A.
- 2. Convert the binary [10101101], i ito its Gray code.
- 3. Give an application each for a multiplexer and a demultiplexer.
- 4. Give an application for XCR function.
- State the problem cormally encountered in SR flip flop.
- 6. How many figure loops are needed to realise a mod-16 counter?
- 7. What is an asynchronous sequential circuit?
- 8. What is a PLA?
- 9. Define fan-cut.
- Define noise-margin.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Draw and explain the principle and operation of TWT amplifiers.	(8)
		(ii)	Explain the characteristics and propagation of space waves.	(8)
			Or	
	(b)	(i)	Discuss the principle of operation of Magnetron with a suita diagram.	(8)
		(ii)	Explain the operation of pulsed radar with a neat diagram.	(8)
12.	(a)	(i)	Draw and explain the different types of satellite transponders.	(8)
		(ii)	Discuss the attitude control of satellites.	(8)
			Or	
	(b)		w the general block diagram of an earth station and briefly expl different subsystems.	ain (16)
13.	(a)	(i)	Discuss the principle of different sources and detectors used optical communication systems.	in (6)
		(ii)	Explain the operation of orthod transmitters and receivers we neat circuit diagrams.	ith (10)
	(b)	(i)	Write a brief not, on fiber optic data communication systems.	(8)
		(ii)	Discuss the different types of losses present in an optical fi	ber (4)
		(iii)	Give a brief note on optical connectors.	(4)
14.	(a)	(i)	Discuss the BORSCHT functions in telephony with a diagram.	(8)
		(ii)	Explain about the telephone hierarchy.	(8)
			Or	
	(b)	(i)	Draw and explain the operation of a paging system.	(8)
		(ii)	Give a brief account of ISDN interfaces.	(4)
		(iii)	Briefly outline the applications of data compression in facsimile.	(4)

15.	(a)	(i)	Give a	brief note	on AMPS
4.55	3,486,7	1,8,7	ALTERNATION A	I DEDEL HOUSE	OUL PURELFICA

(8)

(ii) Why power control and security are regarded as major issues in mobile telephony and discuss how they can be optimized? (8)

Or

(b) (i) Enumerate the salient features of IS-95 system. (10)

MM. Still Molide in the Coff

3

(ii) Give a brief note on RF channels, time slots and modulation techniques of GSM (6)

P 1273