The second second	-	 _	$\overline{}$	_	_	_		
Reg. No.:								

Question Paper Code: P 1263

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester

Electronics and Instrumentation Engineering

EC 1312 — DIGITAL LOGIC CIRCUITS

(Common to Instrumentation and Control Engineering)

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Show that A(A+B) = A.
- 2. Convert the binary [10101101], irin us Gray code.
- 3. Give an application each for a pulliplexer and a demultiplexer.
- 4. Give an application for NOn function.
- 5. State the problem normally encountered in SR flip flop.
- 6. How many flip-Sos are needed to realise a mod-16 counter?
- 7. What is an a vnchronous sequential circuit?
- 8. What is a PLA?
- Define fan-out.
- Define noise-margin.

 (a) Simplify the following using K-map and realise the reduced function using NAND gates

 $\sum m(0, 1, 3, 5, 6, 8, 9, 14, 26, 28, 31) + \sum d(4, 13).$

Or

(b) Simplify the following using Quine Mccluskey method and realise the reduced function using NAND gates

 $\sum m(1, 2, 4, 5, 7, 9, 12, 13) + \sum d(3, 8)$.

- 12. (a) Design the following circuits
 - (i) Full adder (8)
 - (ii) 1-4 demultiplexer. (8)

Or

(b) (i) Implement the following function using a multiplexer

$$F(A, B, C) = \Sigma(1, 3, 5, 6).$$
 (6)

- (ii) Design a 3-to-8 decoder. (10)
- 13. (a) (i) Explain the working of a master-slave JK flip-flop. (8)
 - (ii) Design a mod-7 ccun r. (8)

Or

- (b) Design a sequence detector that produces an output '1' whenever the nonoverlapping concence 1011 is detected.
- 14. (a) Design an asynchronous sequential circuit that has two inputs x_1 and x_2 and con output z. The output z=1 if x_1 changes from 0 to 1, z=0 if x_2 changes from 0 to 1 and z=0 otherwise. Realise the circuit using D-flip-fier.

Or

(b) Design an asynchronous circuit that will output only the second pulse received whenever a control input is asserted from LOW to HIGH state and will ignore any other pulse.

15. (a)		(i)	Explain the working of a two input TTL NAND gate.		
		(ii)	Write notes on FPGA.	(6)	
			Or		
	(b) (i	(i)	Explain the working of a two input CMOS NAND gate.	(10)	
		(ii)	Compare the performance of various digital logic families.	(6)	

Man Singlificon Colf.