The second second	_	-	Contract Contract	-	-	_	Contract of the last
T	100	0.003	THE STATE OF		200	1333	No. of the
Reg. No.:		(C. 17)		1100		- 1	
-			1000	100000		000000000000000000000000000000000000000	

Question Paper Code: P 1298

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Seventh Semester

Electrical and Electronics Engineering

EI 1001 — FIBER OPTICS AND LASER INSTRUMENTS

(Common to Electronics and Instrumentation Engg./Instrumer. viol and Control Engineering)

(Regulation 2004)

Time: Three hours

N...simum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ m. rks})$

- What is the principle used in the working, fabres as light guides?
- 2. Among the different fibres which has the least dispersion?
- 3. Why do we require modulation?
- 4. What are Moire fringes?
- Define "Q-switching and mo 'e locking":
- 6. What are the char. te. dics of laser?
- 7. What is meant by lover action? What are the conditions to achieve it?
- 8. Mention than erits and demerits of laser welding.
- 9. State the asic principle of holography.
- 10. List any four medical applications of laser.

PART B --- $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Classify Optical fibres based on the modes of propagation and refractive index profile and discuss their properties. (8)					
		(ii)	Discuss the different scattering losses in optical fibre at the operating wavelength. (8)					
			Or					
	(b)	(i)	Explain the different types of Connectors and Splicers. (8)					
		(ii)	Give an account of the Optical detector response time and its influence on detector parameters. (8)					
12.	(a)	(i)	Explain any two Fibre optic sensors. (8)					
		(ii)	Give the principle and design of an optical modulator. (8)					
			Or					
	(b)	(i)	Explain the mechanisms involved in interfer me ric method for the measurements of length. (8)					
		(ii)	How will you measure the pressure and e pperature by using an optical fibre? Discuss. (8)					
13.	(a)	(i)	Describe the construction and working of a gas laser. (8)					
		(ii)	Give an account of (1) laser mod's and (2) resonator configuration.					
			Or (8)					
	(b)	(i)	Explain the construction and working of semiconductor laser. (8)					
		(ii)	Write notes on cavity damping and mention the advantages of gas laser over solid state isser. (8)					
14.	(a)	How Expl	will you measure the acceleration and current by using laser?					
			Or					
	(b)	Expl	ain how the atternis used in material processing. (16)					
15.	(a)	Disci	scuss the cristruction and working of holographic interferometry an ention its applications. (16					
			Or					
	(b)		account of laser surgery instruments which are used in plastic ry and gynaecology. (16)					