		 	 	 _
Reg. No.:	1000			

Question Paper Code: R 3676

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Third Semester

Electrical and Electronics Engineering

EE 231 - ELECTROMAGNETIC THEORY

(Regulation 2001)

Time: Three hours

Marimum: 100 marks

Answer ALL questions,

PART A -- (10 × 2 = 20 m trk.)

- Define Electric field intensity.
- 2. Under what conditions will the field it 'enaity be solenoidal and irrotational?
- 3. A conducting triangular loop carrie. a current of 10A. Find H at (0,0,5).
- 4. State Laplace's equation.
- 5. State Ampere's law.
- 6. Define magnetic dip le and magnetic dipole moment.
- 7. Define a wave
- 8. For a lossless medium $\epsilon_r = 20$ and $\mu = 10$. Find the velocity of the plane wave.
- 9. What is onformal transformation? Give one application.
- 10. State the concept of method of images.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	State Gauss law for electric field. Derive its integral differential forms.	and (6)
		(ii)	Derive the expression for the potential at a point P,h metres a circular disc to σ_c/m^2 . Hence deduce the potential at the	
			of the disc.	(10)
			Or	
			10 0 1	
(b) ((i)	Given the potential $V = \frac{10 \sin \theta \cos \phi}{r^2}$ find the electric flux density	
			D at $(2, \pi/2, 0)$.	(10)
		(ii)	If the volume charge density of a given charge distribution is	
			by $\rho = \rho_0(\alpha/r) C/m^3$ in spherical coordinates $\rho = 0$ for	
			Determine E at r <r.< td=""><td>(6)</td></r.<>	(6)
12.	12. (a)	(i)	Derive the expression for the magnetic fier intensity due circular current loop.	to a (8)
		(22)		
		(ii)	Determine the magnetic field intensity due to a solenoid. Or	(8)
(b) (i)		(i)	State Ampere's circuital law and Jsio. Savart's law.	(6)
		(ii)	Explain the boundary condition, between two magnetic media	. (10)
13.	(a)	Der	ive the Maxwells equations in point form and integral form.	(16)
	(b)	(i)	A straight conductor of length 40 cm moves perpendicularly axis at a velocity of 10 m/s in a uniform magnetic field of density 1.2 T. Evante the emf induced in the conductor direction of motions 4 - normal to the hold.	f flux
			-parallel to the fold.	(10)
		(ii)	Discuss the relation between field theory and circuit theory	y in a
			simple stries circuit.	(6)
14.	14. (a)		ine Poynting vector and deduce the Poynting's theorem.	(16)
			Or	
	(b)	(i)	Wr. e short notes on:	
			(1) Uniform plane waves.	(4)
	4	12,	(2) Skin Effect.	(4)
		(ii)	Derive the electromagnetic wave equation.	(8)
			. 9 P	3676

 (a) Consider the two elemental mesh shown in fig. Using finite elemental method determine the potentials within the mesh. (16)

Or

- (b) (i) Explain the Finite difference method to find potential at a point in a charge free medium. (10)
 - (ii) Explain about variable separable medico.

(6)