			the same				100
					V		
Daw No .							
Reg. No.:			100	11000			
		 S					

Question Paper Code: Q 2220

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Sixth Semester

(Regulation 2004)

Electrical and Electronics Engineering

EE 1352 - POWER SYSTEM ANALYSIS

(Common to B.E. (Part-Time) Fifth Semester Regul. ton 2005)

Time: Three hours Maximum: 100 marks

Answer ALL questions

PART A $-(10 \times 2 = 20 \text{ h. arks})$

- What is the need for system analysis ir. planning and operation of power system?
- Draw the single line diagram showing the essential parts in the power system network.
- Explain why one of the bus in the system is taken as slack bus in the load flow studies.
- State at least four applications of power flow studies in the planning and operation of electric power systems.
- 5. Explain the following terms:
 - (a) momentary curvet
 - (b) interruption current.
- The Z-bus mc dis very suitable for fault studies on large systems. Why?
- Write dow, the equations to convert symmetrical components into phase quantities.
- Write the relative frequency of occurrence of various types of faults.
- Define the term "transient stability".
- 10. State equal area criterion.

PART B \rightarrow (5 × 16 = 80 marks)

11.	(a)	(i)	Derive the	Il model for a	transformer	with off-nominal	tap-ratio.
							(8)

(ii) Sketch and explain electric power system and mark the voltage level at various points from generator to load. (8)

Or

- (b) Describe the modern power system in detail.
- (a) Describe the power flow problem. Explain the step-by-step computational procedure to solve the power flow problem using the Gauss-seidal method. (16)

Or

- (b) Derive Newton-Raphson load flow algorithm and explain the implementation of this algorithm. (16)
- (a) With the help of a detailed flow-chart, explain h w s symmetrical fault can be analysed using Z-bus.

Or

- (b) A synchronous generator and motor are rated for 30000 kVA, 13.2 kV and both have subtransient reactance of 20%. The line connecting them has a reactance of 10% on the base of a achine ratings. The motor is drawing 20000 kW at 0.8 pf leading. The terminal voltage of the motor is 12.8 kV. When a symmetrical trace-phase fault occurs at motor terminals, find the subtransient on mut in the generator, motor and fault point.
- (a) Derive the relationship for fault currents in terms of symmetrical components when there is a *-2.-G fault. (16)

Or

- (b) Draw the Zero sequence equivalent circuits for the various possible transformer connections. (16)
- (a) Explain the medified Euler's method of analysing power system stability, with neat flow "bart.

Or

(b) Describe a procedure to simultaneously solve for state variables and network, riables of a system subjected to a transient disturbance. (16)

Q 2220