Reg. No. :					17		4		ı
neg. No. :		1	- 3		-			1	

a imum : 100 marks

Question Paper Code: Q 2219

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Sixth Semester

(Regulation 2004)

Electrical and Electronics Engineering

EE 1851 — SOLID STATE DRIVES

(Common to B.E. (Part - Time) Fifth Semester Regula ion 2005)

Time: Three hours

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ ma})$'s)

- 1. What is passive load torque?
- 2. Mention the factors to be considered see, a motor to drive the load.
- 3. What is TRC?
- 4. How is continuous conduction now to of motor drive obtained?
- 5. What is meant by slip pr we recovery system?
- 6. What are the three regions in the speed-torque characteristics of the induction motor?
- 7. What are the characteristics of self controlled mode operated synchronous motor?
- 8. What a the different modes of control that exist in a synchronous motor on a variation frequency supply?

- 9. What are the advantages of closed loop control of dc drives?
- Draw the characteristics of maximum torque and power limitations of dc drives operating with combined armature voltage and field control.

PART B — $(5 \times 16 = 80 \text{ marks})$

- (a) (i) Explain in detail the multi quadrant dynamics in the speed-torque plane. (8)
 - (ii) Explain the principle of regenerative braking used in four-quadrant industrial drives.
 (8)

Or

- (i) Explain the concept of steady state stability corruition in Industrial drives.
 (8)
 - (ii) Discuss the different modes of operation of an electrical drives.(8)
- (a) (i) Explain the steady state analysis of the single phase fully controlled converter fed separately excited DC moor drive. (10)
 - (ii) Speed of a separately excited do note, is controlled by means of two 3 φ full converters one in the annature circuit and the other in the field circuit and both are 104 rom 3 φ, 400 V, 50 Hz supply. Resistance of the armature and field circuits are 0.2Ω and 320 Ω respectively. The motor to que constant is 0.5 V.S/A-rad. Field converter has zero degree firing angle delay. Armature and field currents have negligible ripple. For rated load torque of 60 N-m at 2000 rpm, Calculate the rated armature current. (6)

Or

- (b) (i) Explain the our quadrant operation of the chopper. (8)
 - (ii) A dc cho, per is used to control the speed of a separately excited dc motor. The dc voltage is 220 V, R_a = 0.2 Ω and motor constant k_a = 0.63 V/rpm. The motor drives a constant load requiring an a region of 25 A, Determine.
 - (1) The range of speed control.
 - (2) The range of duty cycle.

Assume-continuous conduction.

(8)

- (a) (i) Explain in detail, closed loop control of 3φ VSI fed induction motor.
 - (ii) A 3\$\phi\$, 56 kW, 4000 rpm, 460 V, 60 Hz, 2 pole star connected induction motor has the following parameters: $R_s = 0$, $R_r = 0.28 \Omega$, $X_s = 0.23\Omega$, $X_r = 0.23\Omega$ and $X_m = 11\Omega$. The motor is controlled by varying the supply frequency. If the break down torque requirement is 70 Nm. Calculate
 - (1) The supply frequency and
 - (2) The speed W_m at the maximum torque. (8)

Or

- (b) (i) Explain the principle of operation of static Scherbing system. (8)
 - (ii) A 3-phase, 4 pole, 50 Hz slip ring Induction motor when fully loaded, run with a slip of 4%. Find the value of the resistance necessary in series per phase of the rotor of reduce the speed by 15%. Assume that the resistance of the rotor per phase is 0.5 chm.
- (a) Explain the closed loop control of synch your motor with neat block diagram. (16)

Or

- (b) Draw the open loop volts/Hz spec of control of multiple PM synchronous motors and volts/Hz speed on trol characteristics in torque-speed plane. (16)
- 15. (a) With a block diagram director the operation of a closed loop scheme for speed control of a dc mo or, "low and above the base speed. (16)

Or.

- (b) Write short note: 6.
 - (i) Convertor election and characteristics
 - (ii) Field werkening mode control.