						_			_		
Reg. No.:											
TREES TABLE											
The state of the s				_							

Question Paper Code: Q 2722

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

First Year — Annual Pattern

Computer Science and Engineering

MA 1X01 - ENGINEERING MATHEMATICS - I

(Common to all branches)

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL quest on.

- 1. If 0.5, 1.5 are eigenvalues of $A = \begin{pmatrix} 1 & x \\ 1 & 1 \end{pmatrix}$, find the value of x.
- 2. Find the curvature of the curve $x^2 + y^2 + 4x 1 = 0$.
- 3. Reduce $x^2 \frac{d^2y}{dx^2} + 3y = 0$ into a differential equation with constant coefficients.
- 4. Find the particular integral of $\frac{d^2y}{dx^2} y = 2^x$.
- 5. Change the order of integration in $\iint_0^1 \frac{1}{x^2 + y^2} dx dy$.
- 6. Find the tangent plane at (6, 4, 3) to xy + yz + zx = 54.
- 7. Can $x^2 + y^2 2xy$ be the real part of an analytic function? Justify your answer.

- Find the residue at z = 0 of $f(z) = \frac{1}{z^2/z+1}$. 8.
- 9. Verify the initial value theorem given $f(t) = t^{*}$.
- What is the inverse Laplace transform of $\frac{1}{(s+2)^2}$?

PART B $-(5 \times 16 = 80 \text{ marks})$

- Show that the line joining any point θ on $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ to its centre of curvature is bisected by the line
 - Find the inverse of $A = \begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{pmatrix}$ using Cayley Hamilton (6)

- Reduce the quadratic form $-x^2 + y^2 + 4yz + 4zx$ into canonical
 (8) (b) (i) (8)
 - Find the maxima and mining $\mathcal{C}/(x,y) = \sin x \sin y \sin (x+y)$ given $0 < x, y < \pi$. (8)
- Solve $\frac{d^2y}{dx^2} + 121y = \text{an } 11x$ by the method of variation 12. (a) (8)
 - Determine the Sending curve y(x) where y(x) satisfies the differential unation $\frac{d^2y}{dx^2} = \frac{P(l-x)}{EI}$, given y = 0 and $\frac{dy}{dx} = 0$ at x = 0. Or $S_{\text{the}} \left(D^2 + 2D + 1 \right) y = 2e^{-x} + \cos x + x^2 + 1.$ (8)

- (8)
 - (ii) A particle is executing a simple harmonic motion $\frac{d^2x}{dt^2} = -\mu x$. At t = 0, x = a and velocity v = 0. Find the time taken to go from the position $x = \frac{a}{2}$ to x = a. Also prove that this time is $\frac{1}{6}$ of the period. (8)

- (i) Evaluate ∭dx dy dz over the volume cut off the sphere 13. (a) $x^2 + y^2 + z^2 = a^2$ by the cone $x^2 + y^2 = z^2$. (8)
 - A vector field is given by $F = (x^2 y^2 + x)i (2xy + y)j$. Show that the field is irrotational and find its scalar potential. Hence, evaluate the line integral from (1, 2) to (2, 1). (8)

- Find a and b so that the surfaces $ax^2 byz = (a+2)x$ (b) (i) orthogonal to $4x^2y + z^3 = 4$ at (1, -1, 2). (6)
 - Verify Stoke's theorem for $F = (y-z)i + yzj z \kappa$ where S is the (ii) surface bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1 above the xoy plane. (10) z = 1 above the xoy plane.
- If $u = x^2 y^2$ and $v = -\frac{y}{x^2 + y^2}$, prove that both u and v satisfy Laplace equation, but that $u \rightarrow v$ is not a regular function of z. (8)
 - Using Cauchy's integral formula for derivatives, evaluate (8)

$$\int_C \frac{e^{2z}}{(z+1)^4} dz \text{ where } C \text{ is the circle } |z| = 2.$$
(8)
Or
(b) (i) Evaluate
$$\int_0^z \frac{d\theta}{1 - 2a\cos\theta + a^2} \text{ when } |a| < 1.$$
(8)

- Find the bilinear transformation if 1 and i are fixed points and the rigin in z-plane goes to -1 in w-plane. (8)
- Solve ty' y = 5 by using Laplace Transform given y(1) = 10. (8)15. (a) (i)
 - Using convolution theorem find the inverse of $\frac{s}{(s^2+121)^2}$. (8)

Or

(b) (i) Find the Laplace transform of the square wave function

$$f(t) = \begin{cases} k \text{ in } 0 \le t \le a \\ -k \text{ in } a \le t \le 2a \end{cases} \text{ and } f(t+2a) = f(t) \text{ for all } t. \tag{6}$$

(ii) Solve the simultaneous equations:

$$D^2x - Dy = \cos t$$
 and

$$Dx + D^2y = -\sin t$$
 where $D = \frac{d}{dt}$

given that
$$x = 1$$
, $Dx = 0$, $y = 0$ and $Dy = 1$ at $t = 0$. (10)