-							
Reg. No. :							
was Br ries.	S						
		_		-			

Question Paper Code: P 1377

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Seventh Semester

Computer Science and Engineering

IT 1252 — DIGITAL SIGNAL PROCESSING

(Common to B.E. (Part-Time) Sixth Semester Regulation 2005)

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questio

PART A — $(10 \times 2 = 20 \text{ marks})$

- What are the advantages of DSP?
- 2. Define impulse signal.
- Calculate the DFT sequen: x(n) = {1, 1, -2, -2}
- 4. List any four properties of DFT.
- Compare digital and analog filter.
- 6. Sketch the assoping of s-plane and z-plane in bilinear transformation.
- Write the steps involved in FIR filter design.
- Write the expression for Kaiser window function.
- 9. What are the different formats of fixed point representation?
- 10. How overflow limit cycles can be eliminated?

11.	(a)	Test the stability and causality of the following system	
			(8)
		(ii) $y(n) = x(-n-2)$.	(8)
		Or	
	(b)	Find the one sided z-transform of discrete sequences generated mathematically sampling of the following continuous time function.	by
		(i) $x(t) = \sin wt$.	(8)
		(ii) $x(t) = \cos wt$.	(8)
12.	(a)	(i) Calculate the percentage of saving in calculation in computing 512-point using radix-2 FFT when compared to tirct DFT.	(8)
		(ii) Draw and explain the basic butterfly diagra in at DIF radix-2 FFT.	(8)
		Or	
	(b)	An 8-point sequence is given by $x(n) = \{2, 2, 2, 1, 1, 1, 1\}$ compute point DFT of $x(n)$ by	8
		(i) Radix-2 DIT-FFT.	(8)
		(ii) Radix-2 DIF-FFT.	(8)
		Also sketch the magnitude and the spectrum.	
13.	(a)	Apply the bilinear transformation for the following:	
		(s+1)(s+2)	(8)
		(ii) $H_a(s) = \frac{2s}{s^2 + 0.2s + 1}$ with $T = 1$ sec find out $H(z)$.	(8)
		Or	
	(b)	(i) Composithe impulse invariant and bilinear transformation.	(6)
		(ii) Explain the design procedure for lowpass digital butterworth I friter.	IR (0)
14.	(a)	Design a lowpass filter using rectangular window by taking 9 samples	of
	170		(6)
		Or	
	(b)	Design a linear phase lowpass FIR filter with cutoff frequency $\pi/2$ rad/sec using frequency sampling techniques (Take $N = 17$) (1	

- Compare the fixed point and floating point arithmetic, 15. (a) (i) representation and operations.
 - What is meant by product quantization error? Draw and explain the product quantization noise model of IIR system with two first order section in cascade.

- What are zero I/P and overflow limit cycle? (6) (b) (i)
 - Explain the characteristics of the limit cycle in the filter y(n) = 0.95, y(n-1) + x(n). Determine the dead band of filter. (10)