	_							
		 100	 45.00	71 - 1		1	-	-
Reg. No. :		100			1			
100								

Question Paper Code: P 1291

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Fourth Semester

Computer Science and Engineering

EE 1291 — ELECTRICAL ENGINEERING AND CONTROL SYSTEMS

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

(Semilog sheets and polar plots will be provided)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Obtain the equation for the voltage cross any resistance in a series circuit having 'n' number of different resistances.
- 2. What is the formulae for 3 phase perver?
- 3. What is a generator?
- 4. Why is a transformer we laminated?
- Classify the types of induction motors based on starting.
- Define open loop and closed loop control system.
- Define rise time and peak time.
- 8. What is the disadvantage of Bode plot over Polar plot?
- Determine the stability of the system whose characteristic equation is given by s⁴ + 6 s³ + 23 s² + 40 s + 50 = 0.
- 10. The output of a linear system for a unit step input is given by t²e^{-t}. What is its transfer function?

 (a) (i) Using nodal analysis, obtain the currents flowing in all the resistors as shown in fig. 1.
 (8)

Fig. 1

(ii) Simplify the block diagram shown in Fig. 2 and obtain the closed loop transfer function C(s)/R(s).

Fig. 2

Or

(b) (i) A battery having emf of 12 V is connected across the terminals AB of the circuit shown in fig 3. Find

- (1) current flowing in each resistance
- (6)

total power absorbed by the circuit.

(2)

Fig. 3

 (ii) Obtain the transfer function Y(s)/X(s) of the signal flow graph shown in fig. 4.
(8)

Fig. 4

- 12. (a) (i) A resistance of 100 ohm is connected in series with a 50 μF capacitor to a supply at 200 V, 50 Hz. Find (1) imp dance, current, power factor and phase angle (2) voltage a rocs resistor and capacitor. Draw also the phasor diagram. (8)
 - (ii) Obtain the unit-impulse response of first orocs systems. (8)

Or

- (b) (i) Explain the measurement of 3-φ wer by two-wattmeter method for a balanced star-connected load (8)
 - (ii) For the system shown in fig. and the value of 'a' with a damping ratio of 0.5. Determine the rise time, peak time, maximum overshoot and settling time in the unit-step response. (8)

- (a) (i) Explain the constructional details and operating principle of D.C. generator. (8)
 - (ii) What are the necessary and sufficient conditions for stability? Explain. (8)

Or

3

	(0)	(4)	generator. (8)
		(ii)	Find the value of k for the system given by characteristic equation $s^4 + s^3 + k s^2 + s + 1 = 0$ to be stable. (8)
14.	(a)	(i)	Derive the emf equation of single-phase core-type transformer. (6)
		(ii)	Draw the Bode plot for the transfer function
			$G(s) = \frac{200(s+2)}{s(s^2 + 10s + 100)}$
			and determine gain margin and phase margin. (10)
			Or
	(b)	(i)	Explain the construction and operating principle of a 3-\$\phi\$ squirrel cage induction motor. (8)
		(ii)	The open loop transfer function of a unit bedback system is given by $G(s) = \frac{1}{s(1+s)(1+2s)}$. Sketch the polar plot and determine the
			gain margin and phase margin. (8)
15.	(a)	(i)	Explain in detail the starting methods of 1¢ induction motor. (8)
		(ii)	Classify the different types of DC servomotor. Explain any one in detail. (8)
			Or
	(b)	(i)	Explain with a next ketch the operation of stepper motor. (8)
		(ii)	Explain in detail the following:
			(1) hydraclic systems
			(2) pheumatic systems. (4 + 4)