	 	and the second	
Reg. No. :			

Question Paper Code: Q 2729

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2009.

Annual Pattern - First Year

Civil Engineering

PH 1X01 — ENGINEERING PHYSICS

(Common to all branches Except Metallurgical Enginee, ing)

(Regulation 2004)

Time: Three hours Maximum: 100 marks

Answer ALL questions

- A music hall has a volume of 8500 m⁸. If the reverberation time required is 1.05, what should be the total absorption in the hall?
- Name the Seven crystal systems and sive the relation between the basic lattice parameters.
- 3. What are the isochromatic and is dinic fringes?
- Write down the Einstein care ssion for spontaneous and stimulated emission of light.
- 5. What are the concept; us id in fiber optic sensor?
- 6. Define mobility cirle strons.
- With increase of temperature the conductivity of semiconductor increases while that of exetal decreases. Give reasons.
- 8. What are the properties of superconductors?
- 9. Write a note on nanophase materials.
- Distinguish radiography and fluoroscopy.

11.	(a)	(i)	Derive an expression for the Reverberation Time (R.T.) of auditorium and explain how this can be used for determining absorping power of surface involved.	
		(ii)	Describe the acoustical grating method to determine the veloci ultrasonic waves.	ty of . (6) .
			· Or	
	(b)	Calc	culate the packing factor for SC, BCC, FCC and HCP structures. $1.2 \pm 4 \pm 4 \pm 4$	+ 5)
12.	(a)	(i)	How will you use Michelson's Interferometer to determine	Alban.
14.	(41)	(1)	thickness of a thin transparent sheet?	(6)
		(ii)	What is meant by plane, circularly and liptically polarised libriefly describe how these can be produced and detected. (3)	ight? + 7)
			Or Or	
	(b)	(i)	Explain the process of stimulate, emission, Draw a neat diagrarepresent the component of NA-YAG laser. Explain the operat	ion.
		(ii)	Explain the principle, construction and working of any typ	ое оГ
			optical fibre sense:	(6)
13.	(a)	(i)	Derive the Necurcal conductivity of a conducting material	and
			hence obtai. W demann-Franz law.	(12)
		(ii)	What is a significance of the waveform w?	(4)
			Or	
	(b)	(i)	Explain Compton effect and its physical significance.	(5)
		lib	Derive an expression for the density of states and based on	that
	3	7	expression calculate the carrier concentration in metals.	(11)

- (a) (i) Derive an expression for the number of density of holes in an intrinsic semiconductor. (8)
 - (ii) What is Hall coefficient? Derive an expression of Hall coefficient. (8)

0

- (b) (i) Describe a method of determining band gap of a semiconductor. (8)
 - (ii) Explain superconducting phenomena. Distinguish Type I and Type II superconductors. (3 + 5)
- 15. (a) What is meant by local field in a dielectric and how it is calculated for a cubic structure? Deduce the Clausius-Mosotti relation. (2 + 9 + 5)

Or

- (b) (i) What are biomaterials? Explain the conditions to be need for their effective use. (6)
 - (ii) Draw a block diagram of ultrasonic flow detector Explain the three different scan modes used for presentation of data. What are its advantages and limitations? (9 + 2)