AF-1628

BEC 2C1

B.Sc DEGREE EXAMINATION, APRIL 2010

II Semester

CBCS

ELECTRONICS AND COMMUNICATION CIRCUITS, NETWORKS ANALYSIS AND SYNTHESIS (2009 Onwards)

Duration: 3 Hours

Maximum: 75 marks

Part - A

(10 x 2 = 20)

Answer ALL the Questions

1. A 200 Ω R₁ is in series with a 400 Ω R₂ and a 2k Ω R₃. The applied voltage is 52 V. Calculate V₁, V₂ and V₃.

 200Ω R₁ ஒன்று 400Ω R₂ மற்றும் $2k\Omega$ R₃ உடன் தொடரிணைப்பில் உள்ளது. செயல்படுத்தப்படும் மின்னழுத்தம் 52 V, V₁, V₂ மற்றும் V₃ ஆகியவற்றைக் கணக்கிடுக.

- State Kirchhoff's current law. கிர்ச்சாஃபின் மின்னோட்ட விதியைக் கூறுக.
- Define damping factor. தடையுறு காரணியை வரையறு.
- What is transient law?
 மாறுபட்ட காலம் என்றால் என்ன ?
- Define coefficient of coupling. Mention its significance. பிணைப்பு எண்ணை வரையறு. அதன் முக்கியத்துவத்தைக் கூறுக.

6. Distinguish between mean value and root mean square value of an a. c. signal.

ஒரு மாறுதிசை சைகையின் சராசரி மதிப்புக்கும் சராசரி இருமடி மூலத்திற்குமிடையுள்ள வேறுபாட்டைத் தருக.

- 7. What are inverse h parameters?

 தலைகீழ் h காரணிகள் என்றால் என்ன ?
- Define band pass filter.
 பட்டை கணவாய் வடிப்பாவை வரையறு.
- State the importance of Laplace transform.
 லேப்லாஸ் உருமாற்றத்தின் முக்கியத்துவத்தைக் கூறுக.
- 10. Using Laplace transform, find the s-domain equivalent circuit of a resist.

ஒரு மின்தடையின் S – சாா்பு சமான சுற்றை லேப்லாஸ் உருமாற்றத்தைப் பயன்படுத்திக் காண்க.

Part-B

 $(5 \times 5 = 25)$

Answer ALL Questions

11. a. State Thevanin's theorem and prove it in case of a two terminal network.

தேவனின் தேற்றத்தக் கூறி இருமுனை சுற்றில் அதை நிறுவுக.

(OR)

b. Explain Star - delta transformation with examples.
 ஸ்டார்–டெல்டா உருமாற்றத்தை உதாரணங்களுடன் விளக்குக.

 a. Discuss the problem of dc transient response in an R - L circuit. ஒரு R - L சுற்றில் நேர்தீசை மின்னோட்டத்தீன் மாறுபட்ட பதிலீடு பற்றி விவாதி.

(OR)

- b. deduce an expression for the current in an R L C circuit to which a voltage v cos ($\omega t + \theta$) is applied. Explain the conditions for different kinds of damped oscillations. v cos ($\omega t + \theta$) எனும் மினனழுத்தம் அளிக்கப்படும் ஒரு R - L - C சுற்றில் மின்னேடடத்திற்கான கேவையை வருவி. பல்வேறு வகையான தடையுறு அலைவுகளுக்கான நிபந்தனைகளை விவாதி.
- a. Obtain an expression for the band width of an RLC circuit. Also obtain Q of the coil in terms of band width.
 ஒரு RLC சுற்றில் பட்டை அகலத்திற்கான கோவையைப் பெறுக. கம்பிச்சுருளின் Q காரணியை பட்டை அகலத்தோடு தொடர்புபடுத்தும் கோவையையும் பெறுக.

(OR)

b. Define Q of a coil in terms of power. Discuss its effect on band width.

திறனைக் கொண்டு ஒரு சம்பிச் சுருளின் Q காரணியை வரையறு. பட்டை அகலத்தின் மீதான அதன் தாக்கத்தை விவரி.

14. a. What are the open circuit impedance (z) parameters? Deduce them. Also show that $z_{21} = z_{12}$. தறந்த சுற்று மின் எதிர்ப்பு (z) காரணிகள் என்பவை யாவை ? அவற்றை வருவி $z_{21} = z_{12}$ எனக் காண்க.

(OR)

b. Obtain an expression for the characteristic impedance z_{0π} of an constant k - high pass filter.
 மாறா k - உயர் கணவாய் வடிப்பானுக்கேயுரிய மின்னெதீர்ப்பு z_{0π} க்கான

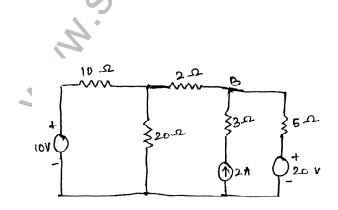
கோவைளை பெறுக.

 a. State and prove initial and final value theorems. ஆரம்ப மற்றும் இறுதி மதிப்பு தோற்றங்களைக் கூறி நீறுவுக.

(OR)

b. How will you find the s - domain equivalent of a capacitor using Laplace transform? Explain.

ஒரு மனிதேக்கியின S – சாா்பு சமன சுற்றை லேப்லாஸ் உருமாற்றத்தைக கொண்டு எவ்வாறு காண்பாய் ? விளக்குக.

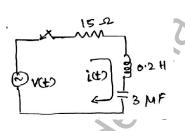

Part-C

 $(3 \times 10 = 30)$

Answer any THREE Questions

16. Find the voltage across the 2Ω resistor shown in fig. by using super - position theorem.

படத்தில் காணப்படும் 2 Ω மின்தடைக்கு குறுக்கே காணப்படும் மின்னழுத்தத்தை மேற்பெருந்துதல் தேற்றத்தைப் பயன்படுத்தி காண்க.



17. In the circuit shown in figure, determine the complete solution for the current, when the switch is closed at time t = 0. Applied voltage

is V (t) = 400 cos (500 t +
$$\frac{\pi}{4}$$
).

படத்தில் காணப்படும் சுற்றில் t=0 எனும் நேரத்தில் சாவி மூடப்படும்போது மின்னோட்டத்திற்கான முழுமையான தீர்வை தீர்மானி. செயல்படுத்தப்படும்

மின்னழுத்தம் $V(t) = 400 \cos{(500 t + \frac{\pi}{4})}$.

18. A voltage V (t) = 10 sin ω t is applied to a series RLC circuit. At the resonance frequency of the circuit, the maximum voltage across the capacitor is found to be 500 V. Moreover, the bandwidth is known to be 400 rad/sec and the impedance at resonance is 100 Ω . Find the resonant frequency. Also find the values of L and C of the circuit.

 $V(t) = 10 \sin \omega$ எனும் மின்னழுத்தம் ஒன்று RLC தொடரிணைப்பில் உள்ள சுற்றுக்கு அளிக்கப்படுகிறது. சுற்றின் ஒத்திசைவு அதிர்வெண்ணில் மின்தேக்கிக்கு குறுக்கே காணப்படும் ஒத்திசைவில் மின்னெதிர்ப்பு $100~\Omega$. ஒத்திசைவு அதிர்வெண்ணைக் காண்க. சுற்றின் L மற்றும் C மதிப்புகளையும் காண்க.

19. Design a low pass filter (both π and T - sections) having a cut - off frequency of 2 kHz to operate with terminated load resistance of 500Ω .

முடக்கப்பட்ட புறமின்தடை $500\,\Omega\,$ உடன் செயல்படுவதற்கான குறுக்குவெட்டு அதிர்வெண்ணை பெற்றிருக்கும் தாழ் கணவாய் வடிப்பானை π மற்றும் T -பகுதிகள் வடிவமைக்க.

20. Find the inverse transform of the function $F(s) = \frac{S+5}{S(S^2+2S+5)}$.

 $F(s) = {S+5\over S(S^2+2S+5)}$ எனும் சாா்பின் தலைகீழ் உருமாற்றத்தைக் காண்க.

AF-1627

BEC 1C2

B.Sc. DEGREE EXAMINATION, APRIL 2010

First Semester

Electonics and Communication

ELECTRONIC DEVICES AND CIRCUITS

(CBCS-2009 Onwards)

Duration: 3 Hours

Maximum : 75 Marks

Part - A

(10 x 2 = 20)

Answer ALL the Questions

- What is meant by energy band? ஆற்றல் பட்டை என்றால் என்ன ?
- What is intrinsic semiconductor?
 உள்ளார்ந்த குறைகடத்தி என்றால் என்ன ?
- What is transistor? Mention the two types of transistor. ழரான்சிஸ்டர் என்றால் என்ன ? அதன் இரு வகைளைக் கூறு.
- 4. Calculate $I_{\rm E}$ in a transistor for which $\beta = 50$ and $I_{\rm B} = 20\mu A$.

 $\beta=50$ மற்றும் $I_{_B}=20\mu A$ எனக் கொண்ட ஒரு டிரான்சிஸ்டரில் $I_{_E}$ யினைக் கணக்கீடுக.

 State requirement for a transistor amplifier to be of class B type.
 ஒரு ழரான்சிஸ்டர் பெருக்கீ B வகை பெருக்கீயாக இருப்பதற்குத் தேவையான கூறுகளைக் கூறு. 6. The overall gain of a multistage amplifier is 140. When negative feedback is applied, the gain is reduced to 17.5. Find the fraction of the output that is fedback to the input.

ஒரு பல்கட்ட பெருக்கியின் மொத்த பெருக்கம் 140. எதிர்பின்னூட்டம் அளிக்கப்படும்போது பெருக்கம் 17.5 ஆகக் குறைகிறது. பின்னூட்டல் தகைவைக்காண்க.

- 7. What is an LC oscillator? LC அலையியற்றி என்றால் என்ன ?
- 8. What is meant by astable multivibrator? நலையற்ற பல் அதிர்வி என்றால் என்ன ?
- Define amplification factor μ of a FET.
 ஒரு FET-ன் பெருக்க எண் μ-வை வரையறு.
- State the difference between a FET and a bipolar transistor. FET மற்றும் இருமுனைய டிரான்சிஸ்டர் ஆகியவ்ற்றுக்கிடையே உள்ள வேறுபாட்டைக் கூறு.

Part-B

 $(5 \times 5 = 25)$

Answer ALL the Questions

11. a. Discuss the behaviour of a *pn* junction under forward and reverse biasing.

ஒரு *pn* சந்தீ முன்னோக்கு மற்றும் பின்னோக்கு சா்புகளின் கீழ் செயல்படும் விதத்தை விவாதி.

(Or)

b. Derive an expression for the efficiency of a half - wave rectifier. ஒரு அரை தீருத்தீயின் பயனுறுதீறனுக்கான கோவையை வருவி.

AF-1627

12. a. Describe the action of an *npn* transistor. ஒரு *npn* ழரான்சிஸ்டர் செயல்படும் விதத்தை விவரி.

(Or)

- b. Explain the potential divider method of biasing a transistor in detail. Also deduce an expression for the stability factor.
 ஒரு டிரான்சிஸ்டருக்கு மின்னழுத்த பகுப்பான் முறையில் சார்பளிக்கப்படும் முறையை விளக்குக. நிலைப்படுத்துதல் காரணிக்கான கோவையை வருவி.
- a. Explain the working of a push pull amplifier with a neat circuit. தள்ளு-இழ பெருக்கியின் செயல்பாட்டை தெளிவான சுற்றுடன் விளக்குக.

(Or)

- b. Derive an expression for the voltage gain of a negative feedback amplifier.
 எதிர்மின்னூட்ட பெருக்கியின் மின்னழுத்த பெருக்கத்திற்கான கோவையை வருவி.
- 14. a. Draw the circuit diagram of Hartley oscillator. Explain its working.

ஹார்ட்லி அலையியற்றியின் சுற்றுப்படத்தைை வரைக. அதன் செயல்பாட்டை விவரி.

(Or)

b. With a neat sketch, explain the working of a monostable multivibrator.

ஒற்றைநிலை பல்லதிர்வி ஒன்றின் செயல்பாட்டை சுற்றுப் படத்துடன் விளக்குக. a. Sketch the circiut of a CS amplifier. Derive the expression for the voltage gain at low frequencies. CS பெருக்கீயின் சுற்றை வரைக. குறைந்த அதிர்வெண்களில் மின்னழுத்த பெருக்கத்திற்கான கோவையை வருவி.

(Or)

b. Write short notes on: (i) MOSFET and (ii) JFET (i) MOSFET மற்றும் (ii) JFET பற்றி சிறகுறிப்பெழுதுக.

Part-C

 $(3 \times 10 = 30)$

Answer any THREE of the following

- 16. A halfwave rectifier uses a transformer of turn ratio 4:1. If the primary voltage is 240 V (r. m. s), find (i) d. c output voltage and (ii) peak inverse voltage. Assume the diode to be ideal. அரை அலை தீருத்தி ஒன்றில் பயன்படும் மின்மாற்றியின் சுற்றுகளின் தகவு 4:1 முதன்மைச் சுற்று மின்னழுத்தம் 240 V (r. m. s) எனில் (i) வெளியீடு நிலை நேர்மின்னழுத்தம் மற்றும் (ii) மின்னழுத்த தலைகீழ் உச்ச மதிப்பு ஆகியவற்றைக் காண்க. டையோடு நல்லியல்புடையோடு எனக் கொள்க.
- 17. In a transistor circuit, collector load $R_c = 4k\Omega$ whereas the zero signal collector current is 1 mA.
 - i. What is the operating point if $V_{cc} = 10 \text{ V}$?
 - ii. What will be the operating point if $R_c = 5k\Omega$?

ஒரு டிரான்சிஸ்டர் சுற்றில் ஏற்பான் மின்தபுறமின்தடை $R_c = 4k\Omega$ சுழிசைகை ஏற்பான் மின்னோட்டம் $1 \text{ mA. i. } V_c = 10 \text{ V}$ எனில் செயல்பாட்டு புள்ளி எது ? ii. $R_c = 5k\Omega$ எனில் செயல்பாட்டு புள்ளி எதுவாக இருக்கும் ? 18. A transistor uses transformer coupling for amplification. The output impedance of transistor is 10kΩ while the input impedance of next stage is 2.5kΩ. Determine the inductance of primary and secondary of the transformer for perfect impedance matching at a frequency of 200 Hz. மின்மாற்றி பிணைப்பு பயன்படுத்தப்படும் ஒரு டிரான்சிஸ்டர் பெருக்கியில் வெளியீட்டு மின் எதிர்ப்பு 10kΩ, அடுத்த அடுக்கின் உள்ளீட்டு மின் எதிர்ப்பு 2.5kΩ.200 Hz அதிர்வெண்ணில் பூரண மின்னெதிர்ப்பு இணைவிற்கான மின்மாற்றியின் முதன்மை மற்றும் துணைசுருள்களின் மின்நிலை மதிப்புகளை

காண்க.

19. In a phase shift oscillator, $R_1 = R_2 = R_3 = 1M\Omega$ and

 $C_1 = C_2 = C_3 = 68 \text{pF}$. At what frequency does the circuit oscillate?

கட்ட பெயர்ச்சி அலையியற்றி ஒன்றில் $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = 1 M \Omega$ மற்றும்

 $C_1=C_2=C_3=68 p F$ எனில் சுற்று எந்த அதிர்வெண்ணில் அலைவுறும் ?

20. In an *n* - channel FET biased by potential divider method, it is desired to set the operating point at $I_D = 2.5 \text{ mA}$ and $V_{DS} = 8 \text{V}$. If $V_{DD} = 30 \text{ V}$, $R_1 = 1 \text{ M}\Omega$ and $R_2 = 500 \text{ k}\Omega$, find the value of R_S . The parameters of FET are $I_{DSS} = 10 \text{ mA}$ and $V_p = -5 \text{V}$. பின்னழுத்த பகுப்பான் முறையில் சார்பளிக்கப்படும் ஒரு n - சேனல் FET-ல் செயல்பாட்டுப் புள்ளி $I_D = 2.5 \text{ mA}$ மற்றும் $V_{DD} = 8 \text{V}$ ஆக வைத்துக் கொள்ள வேண்டும். $R_1 = 1 \text{ M}\Omega$ மற்றும் $R_2 = 500 \text{ k}\Omega$ எனில் R_S -ன் மதிப்பைக் காண்க. (கொடுக்கப்பட்டவை $I_{DSS} = 10 \text{ mA}$ and $V_p = (-5 \text{V})$.

- *** -

AF-1626

BEC 1C1

B.Sc DEGREE EXAMINATION, APRIL 2010

First Semester

Electronics and Communication

ELECTRONIC MEASUREMENT AND INSTRUMENTATION

(CBCS - 2008 Onwards)

Time: 3 Hours

Maximum: 75 Marks

Part - A

 $(10 \times 2 = 20)$

Answer ALL the Questions

- What are transducers? Explain with a suitable example. பரான்ஸ்டியூசர் என்றால் என்ன? தகுந்ததோர் எடுத்துக்காட்டுடன் விளக்குக.
- Give any two applications of AC bridge.
 ஏ.சி. பால அமைப்பின் உபயோகங்கள் ஏதேனும் இரண்டினைக் கூறுக.
- What do you mean by Function generator? சார்பு உருவாக்கி என்றால் என்ன ?
- Define Duty cycle. பணி சுற்றை வரையறு.
- Write down the uses of Digital Multimeter. எண்ணிலக்க பல்வகைமானியின் பயன்பாட்டினை எழுதுக.

- Give a brief note on Guarding techniques.
 பாதுகாப்பு நுணுக்கங்களைக் குறித்து சுருக்கமாக குறிப்பு வரைக.
- What are the various types of Oscilloscopes? அலைநோக்கியின் பல்வேறு வகைகள் யாவை ?
- Write a note on curve tracer. வரைபடக்கோடு உருவாக்கி பற்றி குறிப்பு வரைக.
- 9. What are the requirements of an automatic test system? தானியங்கீ சோதனை அமைப்பிற்கான தேவைகள் யாவை ?
- What is micro controller? மைக்றோகன்ட்றோலர் என்றால் என்ன ?

Part-B

 $(5 \times 5 = 25)$

Answer ALL the Questions

 a. Explain the errors in measurements. அளவீடுகளில் ஏற்படும் பிழைகளை விளக்குக.

(Or)

- b. Describe DC bridge measurements and its applications.
 டி.சி. பால அமைப்பு அளவீடுகள் மற்றும் அவற்றின் உபயோகங்களை விவரி.
- a. Describe AF generator. செவியறு அதீர்வெண் அலை இயக்கீப் பற்றி விவரி.

(Or)

b. What are the types of analyzers? Explain any one type of analyzer.

பகுப்பாய்வு கருவிகளின் வகைகள் யாவை ? ஏதேனும் ஒரு பகுபபாய்வு கருவியினைப் பற்றி விளக்குக.

13. a. Explain automation in voltmeter. மின்னழுத்தமானியில் தானியங்கும் தன்மையை விளக்குக.

(Or)

- b. Explain the following:
 - i. Frequency
 - ii. Period
 - iii. Time interval
 - iv. Pulse width measurements

கீழ்கண்டவற்றை விளக்குக :

- i. அதிர்வெண்
- іі. காலம்
- ііі. கால இடைவேளை மற்றும்
- iV. துடிப்பு அகலம் அளவீடுகள்
- 14. a. Describe sampling oscilloscope with a neat diagram. பாதீரி அலைநோக்கி பற்றி தெளிவான படத்துடன் விவரி.

(Or)

- b. i. Differentiate Analog and Digital recorders
 - ii. Write a note on Printers.
 - . 1. அனலாக் மற்றும் எண்ணிலக்க பதிவு கருவிகளை வேறுபடுத்துக.
 - ii. அச்சிடும் கருவிகள் பற்றி குறிப்பு வரைக.
- 15. a. Explain how to test an audio amplifier?

வெசியுணா் பெருக்கியை சோதனை செய்வது எவ்வாறு என்று விளக்கவும்

(Or)

b. Give a detailed description on Digital control.

எண்ணிலக்க அடக்குதல் பற்றி விரிவான விளக்கம் தருக.

Part-C

 $(3 \times 10 = 30)$

Answer any THREE Questions

- Describe Electronic Weighing Machine.
 மின்னணு எடைபார்க்கும் கருவி பற்றி விளக்குக.
- 17. i. Dis tinguish AM/FM signal gepnerator.
 - ii. What are the uses of signal generator?
 - i. சமிக்கை உருவாக்கிகளை வேறுபடுத்தி காட்டுக.
 - ii. சமிக்கை உருவாக்கியின் பயன்கள் யாவை ?
- 18. Describe digital multimeter with a suitable circuit diagram.

எண்ணிலக்க பல்வகைமானியை தகுந்த மின்சுற்றுடன் விவரி.

- Distinguish between analog storage and digital storage oscilloscope. தொடர்சைகை தேக்குதல், எண்ணிலக்கச்சைகை தேக்குதல் அலைநோக்கியைப் பற்றி வேறுபடுத்துக.
- 20. Explain how microprocessor is used to make measurements. மைக்ரோப்ராஸசர்களைக் கொண்டு எவ்வாறு அளவீடுகள் செய்வது என்பதனை விளக்குக.

