A

D! - 4	<u> </u>		Į		
Register		!		1	
Number					

Part III - MATHEMATICS

(New Syllabus) (English Version)

Time Allowed: 3 Hours J

[Maximum Marks : 200

SECTION - A

- N. B.: i) All questions are compulsory.
 - ii) Each question carries one mark.
 - iii) Choose the most suitable answer from the given four alternatives. $40 \times 1 = 40$
- 1. '+' is a binary operation on
 - a) N
 - b) R
 - c) Z
 - d) $\subset -\{0\}$
- 2. If $f(x) = \frac{A}{\pi} \cdot \frac{1}{16 + x^2}$, $-\infty < x < \infty$ is a p.d.f. of a continuous random variable X, then the value of A is
 - a) 16
 - b) 8
 - c) 4
 - d) 1.

[Turn over

3, $Var(4X +$	3) is
---------------	---	------

- 7 a)
- 16 Var (X) b)
- c) 19
- d) 0.

In a Poisson distribution, if P(X=2) = P(X=3), then the value of its 4. '91/S'-COLL parameter λ is

- a) 6
- b) 2
- c) 3
- d) 0.

For the p.d.f. of the normal distribution function 5.

$$f(x) = C e^{-x^2 + 3x}$$
; $-\infty < x < \infty$, the mean μ is

- a)
- c)
- d)

The area between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle (a > b) is 6.

- a)
- $2\pi a (a-b)$ b)
- c) $\pi a \{a-b\}$
- $2\pi b$ (a-b). d)

7.	The volume, when the curve	$y = \sqrt{3 + x^2}$	from	$x \approx 0$	to	x = 4 is ro	tated
	about x-axis, is						
	a) 100 π						

- b) $\frac{100}{9} \pi$
- c) $\frac{100}{3}\pi$
- d) $\frac{100}{3}$

8. The area of the curve $y^2 = (x-5)^2(x-6)$ between x = 5 and x = 6 is

a) 0

b) 1

c) 4

d) 6

9. The differential equation $\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2 + 5y^{1/3} = x$ is

- a) of order 2 and degree 1
- b) of order 1 and degree 2
- c) of order 1 and degree 6
- d) of order 1 and degree 3.

10. The integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$ is

a) $\int P \, \mathrm{d}x$

b) $\int Q dx$

c) elgax

d) $e^{\int P dx}$.

11. The sum of the distances of any point on the ellipse $4x^2 + 9y^2 = 36$ from $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$ is

a) 4

b) 8

c) 6

d) 18.

A

[Turn over

- 12. The directrix of the hyperbola $x^2 4 (y 3)^2 = 16$ is
 - a) $y = \pm \frac{8}{\sqrt{5}}$
 - b) $x = \pm \frac{8}{\sqrt{5}}$
 - c) $y = \pm \frac{\sqrt{5}}{8}$
 - d) $x = \pm \frac{\sqrt{5}}{8}$.
- 13. The equations of transverse and conjugate axes of the hyperbola

 $144x^2 - 25y^2 = 3600$ respectively are

- a) y = 0; x = 0
- b) x = 12; y = 5
- c) x = 0; y = 0
- d) x = 5; y = 12.
- 14. The slope of the normal to the curve $y = 3x^2$ at the point whose x-coordinate is
 - 2. is
 - a) $\frac{1}{13}$

b) $\frac{1}{14}$

c) $-\frac{1}{12}$

- d) $\frac{1}{12}$.
- 15. The value of C in Rolle's Theorem for the function $f(x) = \cos \frac{x}{2}$ on $[\pi, 3\pi]$

is

a) (

b) 2π

c) $\frac{\pi}{2}$

d) $\frac{3\pi}{2}$.

16. If $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = 64$ then $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$ is

a) 32

b) 8

c) 128

d) 0.

17. The work done by the force $\overrightarrow{F} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ acting on a particle, if the particle is displaced from A (3, 3, 3) to the point B (4, 4, 4), is

a) 2 units

b) 3 units

c) 4 units

d) 7 units.

18. The shortest distance between the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is

- a) $\frac{2}{\sqrt{3}}$
- b) $\frac{1}{\sqrt{\epsilon}}$
- c) $\frac{2}{3}$
- $d) \quad \frac{1}{2\sqrt{6}}$

19. The angle between the vectors $\vec{i} - \vec{j}$ and $\vec{j} - \vec{k}$ is

a) $\frac{\pi}{3}$

b) $-\frac{2\pi}{3}$

c) $-\frac{\pi}{3}$

d) $\frac{2\pi}{3}$

20. The centre and radius of the sphere $\left| \overrightarrow{r} - \left(2\overrightarrow{l} - \overrightarrow{j} + 4\overrightarrow{k} \right) \right| = 5$ are

- a) $\{2, -1, 4\}$ and 5
- b) (2, 1, 4) and 5
- c) (-2, 1, 4) and 6
- d) (2, 1, -4) and 5.

21. The particular integral of $(3D^2 + D - 14)y = 13e^{2x}$ is

- a) $26 xe^{2x}$
- b) $13 \times e^{2x}$
- c) xe^{2x}
- d) $\frac{x^2}{2} e^{2x}$.

22. The differential equation corresponding to $y = ax^2 + bx + c$ where $\{a, b, c\}$ are arbitrary constants, is

- a) y''' + y'' = 0
- b) y'' = 2a
- **c)** y''' = 0
- d) y''' y'' = 0.

23. The conditional statement $p \rightarrow q$ is equivalent to

- a) $p \vee q$
- b) $p \vee (\sim q)$
- c) $(\sim p) \lor q$
- d) $p \wedge q$

24. Which of the following is a contradiction?

- a) $p \vee q$
- b) $p \wedge q$
- c) $p \lor (\sim p)$
- d) $p \wedge (\sim p)$.

25. The value of $[3] + _{11} ([5] + _{11} [6])$ is

a) [0]

b) [1]

c) [2]

d) [3].

26. In a given semicircle of diameter 4 cm a rectangle is to be inscribed. The area of the largest rectangle is

a) 2

b) 4

c) 8

d) 16.

27. The condition for the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ to cut orthogonally is that

- a) $\frac{1}{a} + \frac{1}{c} = \frac{1}{b} + \frac{1}{d}$
- b) $\frac{1}{\alpha} \frac{1}{c} = \frac{1}{b} \frac{1}{d}$
- c) $\frac{1}{a} + \frac{1}{c} = \frac{1}{b} \frac{1}{d}$
- d) $\frac{1}{a} \frac{1}{c} = \frac{1}{b} + \frac{1}{d}$

28. The percentage error in the 11th root of the number 28 is approximately times the percentage error in 28.

- a) $\frac{1}{28}$
- b) $\frac{1}{11}$
- c) 11
- d) 28.

29. The curve $9y^2 = x^2 (4 - x^2)$ is symmetrical about

- a) y-axis only
- b) x-axis only
- c) y = x
- d) both the axes.

30. The value of $\int_{0}^{1} x(1-x)^4 dx$ is

a)

c) $\frac{1}{24}$

91/9. Coll

31. The polar form of the complex number (i^{25})

- a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$
- b) $\cos \pi + i \sin \pi$ c) $\cos \pi i \sin \pi$
- d) $\cos \frac{\pi}{2} i \sin \frac{\pi}{2}$

32. The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

- b)
- c) 1
- d) -1.

33. If ω is a cube root of unity then the value of $(1 - \omega + \omega^2)^4 + (1 + \omega - \omega^2)^4$

is

- a) 0
- b) 32
- c) 16
- d) 32.
- 34. If a + ib = (8-6i)-(2i-7) then the values of a and b respectively are
 - a) 8, ~ 15
 - b) 8, 15
 - c) 1, 4
 - d) 15, -8.
- 35. The line 2x + 3y + 9 = 0 touches the parabola $y^2 = 8x$ at the point
 - a) (0, -3)
 - b) (2.4)
 - c) $\left(-6, \frac{9}{2}\right)$
 - d) $\left(\frac{9}{2}, -6\right)$
- **36.** If A is a square matrix of order n, then | adj A | is
 - a) $|A|^2$
 - b) | A | n
 - c) $|A|^{n-1}$
 - d) | A |.

37. The inverse of
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
 is

a)
$$\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & -1 \\ 5 & 3 \end{bmatrix}$$

d)
$$\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix}$$
.

- 38. If the equations -2x + y + z = l, x - 2y + z = m, x + y - 2z = n, such that l + m + n = 0, then the system has
 - a) a non-zero unique solution
 - trivial solution b)
 - infinitely many solutions c)
 - d) no solution.
- 39. $(A^T)^{-1}$ is equal to

a)
$$A^{-1}$$

d)
$$\left(A^{-1}\right)^T$$
.

- 40. If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$ then
 - \overrightarrow{a} is parallel to \overrightarrow{b}
 - \overrightarrow{a} is perpendicular to \overrightarrow{b}

c)
$$|\overrightarrow{a}| = |\overrightarrow{b}|$$

d) \overrightarrow{a} and \overrightarrow{b} are unit vectors.

SECTION - B

N. B.: i) Answer any ten questions.

- ii) Question No. **55** is compulsory and choose any *nine* questions from the remaining.
- iii) Each question carries six marks.

$$10 \times 6 = 60$$

41. For
$$A = \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{bmatrix}$$
, show that $A = A^{-1}$.

42. a) For any vector \overrightarrow{r} , prove that

For any vector
$$\vec{r}$$
, prove that
$$\vec{r} = (\vec{r} \cdot \vec{l}) \vec{l} + (\vec{r} \cdot \vec{j}) \vec{j} + (\vec{r} \cdot \vec{k}) \vec{k}$$

- b) If $|\overrightarrow{a}| = 13$, $|\overrightarrow{b}| = 5$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 60$, then find $|\overrightarrow{a} \times \overrightarrow{b}|$
- 43. Forces $2\vec{i} + 7\vec{j}$, $2\vec{i} 5\vec{j} + 6\vec{k}$, $-\vec{i} + 2\vec{j} \vec{k}$ act at a point P whose position vector is $4\vec{i} 3\vec{j} 2\vec{k}$. Find the moment of the resultant of three forces acting at P about the point Q whose position vector is $6\vec{i} + \vec{j} 3\vec{k}$.
- 44. Find the square roots of -8-6i.
- 45. P represents the variable complex number z. Find the locus of P

if
$$|2z-1| = |z-2|$$
.

46. The headlight of a motor vehicle is a parabola reflector of diameter 12 cm and depth 4 cm. Find the position of bulb on the axis of the reflector for effective functioning of the headlight.

47. Obtain the Maclaurin's series for $\log_e (1 + x)$.

48. Find the intervals in which $f(x) = x^3 - 3x + 1$ is increasing or decreasing.

49. If u = (x - y)(y - z)(z - x) then show that $u_x + u_y + u_z = 0$.

50. Evaluate: $\int_{0}^{3} \frac{\sqrt{x} \, dx}{\sqrt{x} + \sqrt{3 - x}}.$

51. Solve: $\frac{dy}{dx} + y \cot x = 2 \cos x$.

52. Show that $\sim (p \lor q) \equiv (\sim p) \land (\sim q)$.

- 53. Find the probability distribution of the number of sixes in throwing three dice once.
- 54. Find the mean and variance of the distribution with p.d.f.

$$f(x) = \begin{cases} xe^{-x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$$

 $f(x) = \begin{cases} xe^{-x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$ Find the rank of $\begin{bmatrix} 1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & 6 \end{bmatrix}$.

OR

State and prove cancellation laws on groups. b)

SECTION - C

- N. B.: i) Answer any ten questions.
 - ii) Question No. **70** is compulsory and choose any *nine* questions from the remaining.
 - iii) Each question carries ten marks.

 $10 \times 10 = 100$

- 56. Show that the equations x + y + z = 6, x + 2y + 3z = 14 and x + 4y + 7z = 30 are consistent and solve them by using rank.
- 57. Prove that $\cos(A+B) = \cos A \cos B \sin A \sin B$ by vector method.
- 58. Find the vector and Cartesian equations of the plane through the points (1, 2, 3), (2, 3, 1) and perpendicular to the plane 3x 2y + 4z 5 = 0.
- **59.** If α and β are the roots of $x^2 2x + 2 = 0$ and $\cot \theta = y + 1$, show that

$$\frac{(y+\alpha)^n-(y+\beta)^n}{\alpha-\beta}=\frac{\sin n\theta}{\sin^n\theta}.$$

- 60. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.
- 61. Find the equation of the hyperbola if its asymptotes are parallel to x + 2y 12 = 0 and x 2y + 8 = 0, (2, 4) is the centre of the hyperbola and it passes through (2, 0).

- 62. A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m. If water is being pumped into the tank at the rate of 2 m³/min, find the rate at which the water level is rising when the water is 3 m deep.
- 63. Find the absolute and local maximum and minimum values of

$$f(x) = 1 - x^2; -2 \le x \le 1.$$

- 64. Trace the curve $y^2 = 2x^3$.
- 65. Find the common area enclosed by the parabolas $4y^2 = 9x$ and $3x^2 = 16y$.
- 66. Find the volume of the solid generated by the revolution of the loop of the curve $x = t^2$; $y = t \frac{t^3}{3}$ about x-axis.
- 67. Solve: $(D^2 6D + 9)y = x + e^{2x^2}$.
- 68. Show that the set G of all positive rationals forms a group under the composition * defined by $a*b=\frac{ab}{3}$ for all $a,b\in G$.
- 69. The mean height of 500 male students in a certain college is 151 pounds and the standard deviation is 15 pounds. Assuming the weights are normally distributed, find how many students weigh
 - i) between 120 and 155 pounds
 - ii) more than 185 pounds.

$$[P[0 < z < 2.067] = 0.4803; P[0 < z < 0.2667] = 0.1026;$$

$$P[0 < z < 2.2667] = 0.4881].$$

70. a) Find the eccentricity, centre, foci and vertices of the ellipse

 $36x^2 + 4y^2 - 72x + 32y - 44 = 0$ and also trace the curve.

OR

b) Radium disappears at a rate proportional to the amount present. If 5% of the original amount disappears in 50 years, how much will remain at the end of 100 years?

[Take A_0 as the initial amount] .